ﻻ يوجد ملخص باللغة العربية
The complexity of physico-chemical models of star formation is increasing, with models that take into account new processes and more realistic setups. These models allow astrochemists to compute the evolution of chemical species throughout star formation. Hence, comparing the outputs of such models to observations allows to bring new constraints on star formation. The work presented in this paper is based on the recent public release of a database of radiation hydrodynamical low-mass star formation models. We used this database as physical parameters to compute the time dependent chemical composition of collapsing cores with a 3-phase gas-grain model. The results are analyzed to find chemical tracers of the initial physical parameters of collapse such as the mass, radius, temperature, density, and free-fall time. They are also compared to observed molecular abundances of Class 0 protostars. We find numerous tracers of the initial parameters of collapse, except for the initial mass. More particularly, we find that gas phase CH3CN, NS and OCS trace the initial temperature, while H2CS trace the initial density and free-fall time of the parent cloud. The comparison of our results with a sample of 12 Class 0 low mass protostars allows us to constrain the initial parameters of collapse of low-mass prestellar cores. We find that low-mass protostars are preferentially formed within large cores with radii greater than 20000 au, masses between 2 and 4 Msol, temperatures lower or equal to 15 K, and densities between 6e4 and 2.5e5 part.cm-3, corresponding to free-fall times between 100 and 200 kyrs.
We simulate the formation of a metal-poor (10^-2 Zsun) stellar cluster in one of the first galaxies to form in the early Universe, specifically a high-redshift atomic cooling halo (z~14). This is the first calculation that resolves the formation of i
The stellar initial mass function (IMF) is a fundamental property of star formation, offering key insight into the physics driving the process as well as informing our understanding of stellar populations, their by-products, and their impact on the s
I briefly review recent observations of regions forming low mass stars. The discussion is cast in the form of seven questions that have been partially answered, or at least illuminated, by new data. These are the following: where do stars form in mol
Massive clumps tend to fragment into clusters of cores and condensations, some of which form high-mass stars. In this work, we study the structure of massive clumps at different scales, analyze the fragmentation process, and investigate the possibili
There is mounting evidence that the stellar initial mass function (IMF) could extend much beyond the canonical Mi ~100, Msun limit, but the impact of such hypothesis on the chemical enrichment of galaxies still remains to be clarified. We aim to addr