ترغب بنشر مسار تعليمي؟ اضغط هنا

The Relative Canonical Ideal of the Artin-Schreier-Kummer-Witt family of curves

161   0   0.0 ( 0 )
 نشر من قبل Aristides Kontogeorgis
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the canonical model of the Artin-Schreier-Kummer-Witt flat family of curves over a ring of mixed characteristic. We first prove the relative version of a classical theorem by Petri, then use the model proposed by Bertin-Mezard to construct an explicit generating set for the relative canonical ideal. As a byproduct, we obtain a combinatorial criterion for a set to generate the canonical ideal, applicable to any curve satisfying the assumptions of Petris theorem.

قيم البحث

اقرأ أيضاً

This paper describes a class of Artin-Schreier curves, generalizing results of Van der Geer and Van der Vlugt to odd characteristic. The automorphism group of these curves contains a large extraspecial group as a subgroup. Precise knowledge of this s ubgroup makes it possible to compute the zeta functions of the curves in the class over the field of definition of all automorphisms in the subgroup. As a consequence, we obtain new examples of maximal curves.
We fix a monic polynomial $f(x) in mathbb F_q[x]$ over a finite field and consider the Artin-Schreier-Witt tower defined by $f(x)$; this is a tower of curves $cdots to C_m to C_{m-1} to cdots to C_0 =mathbb A^1$, with total Galois group $mathbb Z_p$. We study the Newton slopes of zeta functions of this tower of curves. This reduces to the study of the Newton slopes of L-functions associated to characters of the Galois group of this tower. We prove that, when the conductor of the character is large enough, the Newton slopes of the L-function form arithmetic progressions which are independent of the conductor of the character. As a corollary, we obtain a result on the behavior of the slopes of the eigencurve associated to the Artin-Schreier-Witt tower, analogous to the result of Buzzard and Kilford.
We consider a Fermat curve $F_n:x^n+y^n+z^n=1$ over an algebraically closed field $k$ of characteristic $pgeq0$ and study the action of the automorphism group $G=left(mathbb{Z}/nmathbb{Z}timesmathbb{Z}/nmathbb{Z}right)rtimes S_3$ on the canonical rin g $R=bigoplus H^0(F_n,Omega_{F_n}^{otimes m})$ when $p>3$, $p mid n$ and $n-1$ is not a power of $p$. In particular, we explicitly determine the classes $[H^0(F_n,Omega_{F_n}^{otimes m})]$ in the Grothendieck group $K_0(G,k)$ of finitely generated $k[G]$-modules, describe the respective equivariant Hilbert series $H_{R,G}(t)$ as a rational function, and use our results to write a program in Sage that computes $H_{R,G}(t)$ for an arbitrary Fermat curve.
Let $X$ be the blowup of a weighted projective plane at a general point. We study the problem of finite generation of the Cox ring of $X$. Generalizing examples of Srinivasan and Kurano-Nishida, we consider examples of $X$ that contain a negative cur ve of the class $H-mE$, where $H$ is the class of a divisor pulled back from the weighted projective plane and $E$ is the class of the exceptional curve. For any $m>0$ we construct examples where the Cox ring is finitely generated and examples where it is not.
198 - M. Boggi , P. Lochak 2011
Let ${cal M}_{g,[n]}$, for $2g-2+n>0$, be the D-M moduli stack of smooth curves of genus $g$ labeled by $n$ unordered distinct points. The main result of the paper is that a finite, connected etale cover ${cal M}^l$ of ${cal M}_{g,[n]}$, defined over a sub-$p$-adic field $k$, is almost anabelian in the sense conjectured by Grothendieck for curves and their moduli spaces. The precise result is the following. Let $pi_1({cal M}^l_{ol{k}})$ be the geometric algebraic fundamental group of ${cal M}^l$ and let ${Out}^*(pi_1({cal M}^l_{ol{k}}))$ be the group of its exterior automorphisms which preserve the conjugacy classes of elements corresponding to simple loops around the Deligne-Mumford boundary of ${cal M}^l$ (this is the $ast$-condition motivating the almost above). Let us denote by ${Out}^*_{G_k}(pi_1({cal M}^l_{ol{k}}))$ the subgroup consisting of elements which commute with the natural action of the absolute Galois group $G_k$ of $k$. Let us assume, moreover, that the generic point of the D-M stack ${cal M}^l$ has a trivial automorphisms group. Then, there is a natural isomorphism: $${Aut}_k({cal M}^l)cong{Out}^*_{G_k}(pi_1({cal M}^l_{ol{k}})).$$ This partially extends to moduli spaces of curves the anabelian properties proved by Mochizuki for hyperbolic curves over sub-$p$-adic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا