ﻻ يوجد ملخص باللغة العربية
We consider a Fermat curve $F_n:x^n+y^n+z^n=1$ over an algebraically closed field $k$ of characteristic $pgeq0$ and study the action of the automorphism group $G=left(mathbb{Z}/nmathbb{Z}timesmathbb{Z}/nmathbb{Z}right)rtimes S_3$ on the canonical ring $R=bigoplus H^0(F_n,Omega_{F_n}^{otimes m})$ when $p>3$, $p mid n$ and $n-1$ is not a power of $p$. In particular, we explicitly determine the classes $[H^0(F_n,Omega_{F_n}^{otimes m})]$ in the Grothendieck group $K_0(G,k)$ of finitely generated $k[G]$-modules, describe the respective equivariant Hilbert series $H_{R,G}(t)$ as a rational function, and use our results to write a program in Sage that computes $H_{R,G}(t)$ for an arbitrary Fermat curve.
We study the critical points of the likelihood function over the Fermat hypersurface. This problem is related to one of the main problems in statistical optimization: maximum likelihood estimation. The number of critical points over a projective vari
Progress on the problem whether the Hilbert schemes of locally Cohen-Macaulay curves in projective 3 space are connected has been hampered by the lack of an answer to a question that was raised by Robin Hartshorne in his paper On the connectedness of
Let $rho_C$ be the regularity of the Hilbert function of a projective curve $C$ in $mathbb P^n_K$ over an algebraically closed field $K$ and $alpha_1,...,alpha_{n-1}$ be minimal degrees for which there exists a complete intersection of type $(alpha_1
We give a notion of combinatorial proximity among strongly stable ideals in a given polynomial ring with a fixed Hilbert polynomial. We show that this notion guarantees geometric proximity of the corresponding points in the Hilbert scheme. We define
The Hilbert scheme $mathbf{Hilb}_{p(t)}^{n}$ parametrizes closed subschemes and families of closed subschemes in the projective space $mathbb{P}^n$ with a fixed Hilbert polynomial $p(t)$. It is classically realized as a closed subscheme of a Grassman