ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical and general relativistic post-Keplerian effects in binary pulsars hosting fast rotating main sequence stars

112   0   0.0 ( 0 )
 نشر من قبل Lorenzo Iorio
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a binary system composed of a pulsar and a massive, fast rotating, highly distorted main sequence star as a potential scenario to dynamically put to the test certain post-Keplerian effects of both Newtonian and post-Newtonian nature. We numerically produce time series of the perturbations $Deltaleft(deltatauright)$ of the R{o}mer-like, orbital component of the pulsars time delay $deltatau$ induced over 10 years by the pN gravitoelectric mass monopole, quadrupole, gravitomagnetic spin dipole and octupole accelerations along with the Newtonian quadrupolar one. We do not deal with the various propagation time delays due to the travelling electromagnetic waves. It turns out that, for a Be-type star with $M = 15 textrm{M}_odot$, $R_textrm{e} = 5.96 textrm{R}_odot$, $ u = 0.203$, $S = 3.41times 10^{45} textrm{J} textrm{s}$, $J_2 = 1.92times 10^{-3}$ orbited by a pulsar with an orbital period $P_textrm{b}simeq 40-70 textrm{d}$, the classical oblateness-driven effects are at the $lesssim 4-150 textrm{s}$ level, while the pN shifts are of the order of $lesssim 1.5-20 textrm{s} left(GMc^{-2}right)$, $lesssim 10-40 textrm{ms} left(GMR^2_textrm{e} J_2 c^{-2}right)$, $lesssim 0.5 - 6 textrm{ms} left(GSc^{-2}right)$, $lesssim 5 - 20 mutextrm{s} left(GSR^2_textrm{e} varepsilon^2 c^{-2}right)$, depending on their orbital configuration. The root-mean-square (rms) timing residuals $sigma_{tau}$ of almost all the existing non-recycled, non-millisecond pulsars orbiting massive, fast rotating main sequence stars are $lesssimtextrm{ms}$. Thus, such kind of binaries have the potential to become interesting laboratories to measure, or, at least, constrain, some Newtonian and post-Newtonian key features of the distorted gravitational fields of the fast rotating stars hosted by them [Abridged].

قيم البحث

اقرأ أيضاً

We have studied the dynamics of an equal-mass magnetized neutron-star binary within a resistive magnetohydrodynamic (RMHD) approach in which the highly conducting stellar interior is matched to an electrovacuum exterior. Because our analysis is aimed at assessing the modifications introduced by resistive effects on the dynamics of the binary after the merger and through to collapse, we have carried out a close comparison with an equivalent simulation performed within the traditional ideal magnetohydrodynamic approximation. We have found that there are many similarities between the two evolutions but also one important difference: the survival time of the hyper massive neutron star increases in a RMHD simulation. This difference is due to a less efficient magnetic-braking mechanism in the resistive regime, in which matter can move across magnetic-field lines, thus reducing the outward transport of angular momentum. Both the RMHD and the ideal magnetohydrodynamic simulations carried here have been performed at higher resolutions and with a different grid structure than those in previous work of ours [L. Rezzolla, B. Giacomazzo, L. Baiotti, J. Granot, C. Kouveliotou, and M. A. Aloy, Astrophys. J. Letters 732, L6 (2011)], but confirm the formation of a low-density funnel with an ordered magnetic field produced by the black hole--torus system. In both regimes the magnetic field is predominantly toroidal in the highly conducting torus and predominantly poloidal in the nearly evacuated funnel. Reconnection processes or neutrino annihilation occurring in the funnel, none of which we model, could potentially increase the internal energy in the funnel and launch a relativistic outflow, which, however, is not produced in these simulations.
In this work we investigate the structure of white dwarfs using the Tolman-Oppenheimer-Volkoff equations and compare our results with those obtained from Newtonian equations of gravitation in order to put in evidence the importance of General Relativ ity (GR) for the structure of such stars. We consider in this work for the matter inside white dwarfs two equations of state, frequently found in the literature, namely, the Chandrasekhar and Salpeter equations of state. We find that using Newtonian equilibrium equations, the radii of massive white dwarfs ($M>1.3M_{odot}$) are overestimated in comparison with GR outcomes. For a mass of $1.415M_{odot}$ the white dwarf radius predicted by GR is about 33% smaller than the Newtonian one. Hence, in this case, for the surface gravity the difference between the general relativistic and Newtonian outcomes is about 65%. We depict the general relativistic mass-radius diagrams as $M/M_{odot}=R/(a+bR+cR^2+dR^3+kR^4)$, where $a$, $b$, $c$ and $d$ are parameters obtained from a fitting procedure of the numerical results and $k=(2.08times 10^{-6}R_{odot})^{-1}$, being $R_{odot}$ the radius of the Sun in km. Lastly, we point out that GR plays an important role to determine any physical quantity that depends, simultaneously, on the mass and radius of massive white dwarfs.
General relativity is a fully conservative theory, but there exist other possible metric theories of gravity. We consider non-conservative ones with a parameterized post-Newtonian (PPN) parameter, $zeta_2$. A non-zero $zeta_2$ induces a self-accelera tion for the center of mass of an eccentric binary pulsar system, which contributes to the second time derivative of the pulsar spin frequency, $ddot{ u}$. In our work, using the method in Will (1992), we provide an improved analysis with four well-timed, carefully-chosen binary pulsars. In addition, we extend Wills method and derive $zeta_2$s effect on the third time derivative of the spin frequency, $dddot{ u}$. For PSR B1913+16, the constraint from $dddot{ u}$ is even tighter than that from $ddot{ u}$. We combine multiple pulsars with Bayesian inference, and obtain an upper limit, $left|zeta_{2}right|<1.3times10^{-5}$ at 95% confidence level, assuming a flat prior in $log_{10} left| zeta_{2}right|$. It improves the existing bound by a factor of three. Moreover, we propose an analytical timing formalism for $zeta_2$. Our simulated times of arrival with simplified assumptions show binary pulsars capability in limiting $zeta_{2}$, and useful clues are extracted for real data analysis in future. In particular, we discover that for PSRs B1913+16 and J0737$-$3039A, $dddot{ u}$ can yield more constraining limits than $ddot{ u}$.
In this contribution we give a progress report on our systematic study of a large sample of post-AGB stars. The sample stars were selected on the basis of their infrared colours and the selection criteria were tuned to discover objects with hot dust in the system. We started a very extensive, multi-wavelength programme which includes the analysis of our radial velocity monitoring; our optical high-resolution spectra; our groundbased N-band spectral data as well as the Spitzer full spectral scans; the broad-band SED and the high spatial-resolution interferometric experiments with the VLTI. In this contribution we highlight the main results obtained so far and argue that all systems in our sample are indeed binaries, which are surrounded by dusty Keplerian circumbinary discs. The discs play a lead role in the evolution of the systems.
Angular momentum at null infinity has a supertranslation ambiguity from the lack of a preferred Poincare group and a similar ambiguity when the center-of-mass position changes as linear momentum is radiated. Recently, we noted there is an additional one-parameter ambiguity in the possible definitions of angular momentum and center-of-mass charge. We argue that this one-parameter ambiguity can be resolved by considering the generalized BMS charges that are constructed from local 2-sphere-covariant tensors near null infinity; these supertranslation-covariant charges differ from several expressions currently used. Quantizing angular momentum requires a supertranslation-invariant angular momentum in the center-of-mass frame. We propose one such definition of angular momentum involving nonlocal quantities on the 2-sphere, which could be used to define a quantum notion of general-relativistic angular momentum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا