ترغب بنشر مسار تعليمي؟ اضغط هنا

General-relativistic resistive-magnetohydrodynamic simulations of binary neutron stars

202   0   0.0 ( 0 )
 نشر من قبل Kyriaki Dionysopoulou
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the dynamics of an equal-mass magnetized neutron-star binary within a resistive magnetohydrodynamic (RMHD) approach in which the highly conducting stellar interior is matched to an electrovacuum exterior. Because our analysis is aimed at assessing the modifications introduced by resistive effects on the dynamics of the binary after the merger and through to collapse, we have carried out a close comparison with an equivalent simulation performed within the traditional ideal magnetohydrodynamic approximation. We have found that there are many similarities between the two evolutions but also one important difference: the survival time of the hyper massive neutron star increases in a RMHD simulation. This difference is due to a less efficient magnetic-braking mechanism in the resistive regime, in which matter can move across magnetic-field lines, thus reducing the outward transport of angular momentum. Both the RMHD and the ideal magnetohydrodynamic simulations carried here have been performed at higher resolutions and with a different grid structure than those in previous work of ours [L. Rezzolla, B. Giacomazzo, L. Baiotti, J. Granot, C. Kouveliotou, and M. A. Aloy, Astrophys. J. Letters 732, L6 (2011)], but confirm the formation of a low-density funnel with an ordered magnetic field produced by the black hole--torus system. In both regimes the magnetic field is predominantly toroidal in the highly conducting torus and predominantly poloidal in the nearly evacuated funnel. Reconnection processes or neutrino annihilation occurring in the funnel, none of which we model, could potentially increase the internal energy in the funnel and launch a relativistic outflow, which, however, is not produced in these simulations.



قيم البحث

اقرأ أيضاً

With an increasing number of expected gravitational-wave detections of binary neutron star mergers, it is essential that gravitational-wave models employed for the analysis of observational data are able to describe generic compact binary systems. Th is includes systems in which the individual neutron stars are millisecond pulsars for which spin effects become essential. In this work, we perform numerical-relativity simulations of binary neutron stars with aligned and anti-aligned spins within a range of dimensionless spins of $chi sim [-0.28,0.58]$. The simulations are performed with multiple resolutions, show a clear convergence order and, consequently, can be used to test existing waveform approximants. We find that for very high spins gravitational-wave models that have been employed for the interpretation of GW170817 and GW190425 are not capable of describing our numerical-relativity dataset. We verify through a full parameter estimation study in which clear biases in the estimate of the tidal deformability and effective spin are present. We hope that in preparation of the next gravitational-wave observing run of the Advanced LIGO and Advanced Virgo detectors our new set of numerical-relativity data can be used to support future developments of new gravitational-wave models.
63 - Mark Miller 2005
We investigate the dynamic stability of inspiraling neutron stars by performing multiple-orbit numerical relativity simulations of the binary neutron star inspiral process. By introducing eccentricities in the orbits of the neutron stars, significant changes in orbital separation are obtained within orbital timescales. We find that as the binary system evolves from apastron to periastron (as the binary separation decreases), the central rest mass density of each star decreases, thus stabilizing the stars against individual prompt collapse. As the binary system evolves from periastron to apastron, the central rest mass density increases; the neutron stars re-compress as the binary separation increases.
Determining the equation of state of matter at nuclear density and hence the structure of neutron stars has been a riddle for decades. We show how the imminent detection of gravitational waves from merging neutron star binaries can be used to solve t his riddle. Using a large number of accurate numerical-relativity simulations of binaries with nuclear equations of state, we find that the postmerger emission is characterized by two distinct and robust spectral features. While the high-frequency peak has already been associated with the oscillations of the hypermassive neutron star produced by the merger and depends on the equation of state, a new correlation emerges between the low-frequency peak, related to the merger process, and the total compactness of the stars in the binary. More importantly, such a correlation is essentially universal, thus providing a powerful tool to set tight constraints on the equation of state. If the mass of the binary is known from the inspiral signal, the combined use of the two frequency peaks sets four simultaneous constraints to be satisfied. Ideally, even a single detection would be sufficient to select one equation of state over the others. We test our approach with simulated data and verify it works well for all the equations of state considered.
Gravitomagnetic quasi-normal modes of neutron stars are resonantly excited by tidal effects during a binary inspiral, leading to a potentially measurable effect in the gravitational-wave signal. We take an important step towards incorporating these e ffects in waveform models by developing a relativistic effective action for the gravitomagnetic dynamics that clarifies a number of subtleties. Working in the slow-rotation limit, we first consider the post-Newtonian approximation and explicitly derive the effective action from the equations of motion. We demonstrate that this formulation opens a way to compute mode frequencies, yields insights into the relevant matter variables, and elucidates the role of a shift symmetry of the fluid properties under a displacement of the gravitomagnetic mode amplitudes. We then construct a fully relativistic action based on the symmetries and a power counting scheme. This action involves four coupling coefficients that depend on the internal structure of the neutron star and characterize the key matter parameters imprinted in the gravitational waves. We show that, after fixing one of the coefficients by normalization, the other three directly involve the two kinds of gravitomagnetic Love numbers (static and irrotational), and the mode frequencies. We discuss several interesting features and dynamical consequences of this action, and analyze the frequency-domain response function (the frequency-dependent ratio between the induced flux quadrupole and the external gravitomagnetic field), and a corresponding Love operator representing the time-domain response. Our results provide the foundation for deriving precision predictions of gravitomagnetic effects, and the nuclear physics they encode, for gravitational-wave astronomy.
Extending previous work by a number of authors, we have recently presented a new approach in which the detection of gravitational waves from merging neutron star binaries can be used to determine the equation of state of matter at nuclear density and hence the structure of neutron stars. In particular, after performing a large number of numerical-relativity simulations of binaries with nuclear equations of state, we have found that the post-merger emission is characterized by two distinct and robust spectral features. While the high-frequency peak was already shown to be associated with the oscillations of the hypermassive neutron star produced by the merger and to depend on the equation of state, we have highlighted that the low-frequency peak is related to the merger process and to the total compactness of the stars in the binary. This relation is essentially universal and provides a powerful tool to set tight constraints on the equation of state. We here provide additional information on the extensive analysis performed, illustrating the methods used, the tests considered, as well as the robustness of the results. We also discuss additional relations that can be deduced when exploring the data and how these correlate with various properties of the binary. Finally, we present a simple mechanical toy model that explains the main spectral features of the post-merger signal and can even reproduce analytically the complex waveforms emitted right after the merger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا