ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting Precision and Recall Definition for Generative Model Evaluation

65   0   0.0 ( 0 )
 نشر من قبل Julien Rabin
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article we revisit the definition of Precision-Recall (PR) curves for generative models proposed by Sajjadi et al. (arXiv:1806.00035). Rather than providing a scalar for generative quality, PR curves distinguish mode-collapse (poor recall) and bad quality (poor precision). We first generalize their formulation to arbitrary measures, hence removing any restriction to finite support. We also expose a bridge between PR curves and type I and type II error rates of likelihood ratio classifiers on the task of discriminating between samples of the two distributions. Building upon this new perspective, we propose a novel algorithm to approximate precision-recall curves, that shares some interesting methodological properties with the hypothesis testing technique from Lopez-Paz et al (arXiv:1610.06545). We demonstrate the interest of the proposed formulation over the original approach on controlled multi-modal datasets.

قيم البحث

اقرأ أيضاً

Despite the tremendous progress in the estimation of generative models, the development of tools for diagnosing their failures and assessing their performance has advanced at a much slower pace. Recent developments have investigated metrics that quan tify which parts of the true distribution is modeled well, and, on the contrary, what the model fails to capture, akin to precision and recall in information retrieval. In this paper, we present a general evaluation framework for generative models that measures the trade-off between precision and recall using Renyi divergences. Our framework provides a novel perspective on existing techniques and extends them to more general domains. As a key advantage, this formulation encompasses both continuous and discrete models and allows for the design of efficient algorithms that do not have to quantize the data. We further analyze the biases of the approximations used in practice.
292 - Fei Deng , Zhuo Zhi , Sungjin Ahn 2019
Compositional structures between parts and objects are inherent in natural scenes. Modeling such compositional hierarchies via unsupervised learning can bring various benefits such as interpretability and transferability, which are important in many downstream tasks. In this paper, we propose the first deep latent variable model, called RICH, for learning Representation of Interpretable Compositional Hierarchies. At the core of RICH is a latent scene graph representation that organizes the entities of a scene into a tree structure according to their compositional relationships. During inference, taking top-down approach, RICH is able to use higher-level representation to guide lower-level decomposition. This avoids the difficult problem of routing between parts and objects that is faced by bottom-up approaches. In experiments on images containing multiple objects with different part compositions, we demonstrate that RICH is able to learn the latent compositional hierarchy and generate imaginary scenes.
In this paper we revisit the idea of pseudo-labeling in the context of semi-supervised learning where a learning algorithm has access to a small set of labeled samples and a large set of unlabeled samples. Pseudo-labeling works by applying pseudo-lab els to samples in the unlabeled set by using a model trained on the combination of the labeled samples and any previously pseudo-labeled samples, and iteratively repeating this process in a self-training cycle. Current methods seem to have abandoned this approach in favor of consistency regularization methods that train models under a combination of different styles of self-supervised losses on the unlabeled samples and standard supervised losses on the labeled samples. We empirically demonstrate that pseudo-labeling can in fact be competitive with the state-of-the-art, while being more resilient to out-of-distribution samples in the unlabeled set. We identify two key factors that allow pseudo-labeling to achieve such remarkable results (1) applying curriculum learning principles and (2) avoiding concept drift by restarting model parameters before each self-training cycle. We obtain 94.91% accuracy on CIFAR-10 using only 4,000 labeled samples, and 68.87% top-1 accuracy on Imagenet-ILSVRC using only 10% of the labeled samples. The code is available at https://github.com/uvavision/Curriculum-Labeling
In recent years, unsupervised/weakly-supervised conditional generative adversarial networks (GANs) have achieved many successes on the task of modeling and generating data. However, one of their weaknesses lies in their poor ability to separate, or d isentangle, the different factors that characterize the representation encoded in their latent space. To address this issue, we propose a novel structure for unsupervised conditional GANs powered by a novel Information Compensation Connection (IC-Connection). The proposed IC-Connection enables GANs to compensate for information loss incurred during deconvolution operations. In addition, to quantify the degree of disentanglement on both discrete and continuous latent variables, we design a novel evaluation procedure. Our empirical results suggest that our method achieves better disentanglement compared to the state-of-the-art GANs in a conditional generation setting.
In this note I study how the precision of a classifier depends on the ratio $r$ of positive to negative cases in the test set, as well as the classifiers true and false positive rates. This relationship allows prediction of how the precision-recall c urve will change with $r$, which seems not to be well known. It also allows prediction of how $F_{beta}$ and the Precision Gain and Recall Gain measures of Flach and Kull (2015) vary with $r$.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا