ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-stage Estimation for Quantum Detector Tomography: Error Analysis, Numerical and Experimental Results

314   0   0.0 ( 0 )
 نشر من قبل Daoyi Dong
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum detector tomography is a fundamental technique for calibrating quantum devices and performing quantum engineering tasks. In this paper, a novel quantum detector tomography method is proposed. First, a series of different probe states are used to generate measurement data. Then, using constrained linear regression estimation, a stage-1 estimation of the detector is obtained. Finally, the positive semidefinite requirement is added to guarantee a physical stage-2 estimation. This Two-stage Estimation (TSE) method has computational complexity $O(nd^2M)$, where $n$ is the number of $d$-dimensional detector matrices and $M$ is the number of different probe states. An error upper bound is established, and optimization on the coherent probe states is investigated. We perform simulation and a quantum optical experiment to testify the effectiveness of the TSE method.

قيم البحث

اقرأ أيضاً

We report an experimental realization of adaptive Bayesian quantum state tomography for two-qubit states. Our implementation is based on the adaptive experimental design strategy proposed in [F.Huszar and N.M.T.Houlsby, Phys.Rev.A 85, 052120 (2012)] and provides an optimal measurement approach in terms of the information gain. We address the practical questions, which one faces in any experimental application: the influence of technical noise, and behavior of the tomographic algorithm for an easy to implement class of factorized measurements. In an experiment with polarization states of entangled photon pairs we observe a lower instrumental noise floor and superior reconstruction accuracy for nearly-pure states of the adaptive protocol compared to a non-adaptive. At the same time we show, that for the mixed states the restriction to factorized measurements results in no advantage for adaptive measurements, so general measurements have to be used.
Quantum key distribution (QKD) offers a practical solution for secure communication between two distinct parties via a quantum channel and an authentic public channel. In this work, we consider different approaches to the quantum bit error rate (QBER ) estimation at the information reconciliation stage of the post-processing procedure. For reconciliation schemes employing low-density parity-check (LDPC) codes, we develop a novel syndrome-based QBER estimation algorithm. The algorithm suggested is suitable for irregular LDPC codes and takes into account punctured and shortened bits. Testing our approach in a real QKD setup, we show that an approach combining the proposed algorithm with conventional QBER estimation techniques allows one to improve the accuracy of the QBER estimation.
Quantum detector tomography is a fundamental technique for calibrating quantum devices and performing quantum engineering tasks. In this paper, we design optimal probe states for detector estimation based on the minimum upper bound of the mean square d error (UMSE) and the maximum robustness. We establish the minimum UMSE and the minimum condition number for quantum detectors and provide concrete examples that can achieve optimal detector tomography. In order to enhance estimation precision, we also propose a two-step adaptive detector tomography algorithm and investigate how this adaptive strategy can be used to achieve efficient estimation of quantum detectors. Moreover, the superposition of coherent states are used as probe states for quantum detector tomography and the estimation error is analyzed. Numerical results demonstrate the effectiveness of both the proposed optimal and adaptive quantum detector tomography methods.
Rather than point estimators, states of a quantum system that represent ones best guess for the given data, we consider optimal regions of estimators. As the natural counterpart of the popular maximum-likelihood point estimator, we introduce the maxi mum-likelihood region---the region of largest likelihood among all regions of the same size. Here, the size of a region is its prior probability. Another concept is the smallest credible region---the smallest region with pre-chosen posterior probability. For both optimization problems, the optimal region has constant likelihood on its boundary. We discuss criteria for assigning prior probabilities to regions, and illustrate the concepts and methods with several examples.
We consider error correction in quantum key distribution. To avoid that Alice and Bob unwittingly end up with different keys precautions must be taken. Before running the error correction protocol, Bob and Alice normally sacrifice some bits to estima te the error rate. To reduce the probability that they end up with different keys to an acceptable level, we show that a large number of bits must be sacrificed. Instead, if Alice and Bob can make a good guess about the error rate before the error correction, they can verify that their keys are similar after the error correction protocol. This verification can be done by utilizing properties of Low Density Parity Check codes used in the error correction. We compare the methods and show that by verification it is often possible to sacrifice less bits without compromising security. The improvement is heavily dependent on the error rate and the block length, but for a key produced by the IdQuantique system Clavis^2, the increase in the key rate is approximately 5 percent. We also show that for systems with large fluctuations in the error rate a combination of the two methods is optimal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا