ترغب بنشر مسار تعليمي؟ اضغط هنا

Error Estimation, Error Correction and Verification In Quantum Key Distribution

535   0   0.0 ( 0 )
 نشر من قبل {\\O}ystein Mar{\\o}y
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider error correction in quantum key distribution. To avoid that Alice and Bob unwittingly end up with different keys precautions must be taken. Before running the error correction protocol, Bob and Alice normally sacrifice some bits to estimate the error rate. To reduce the probability that they end up with different keys to an acceptable level, we show that a large number of bits must be sacrificed. Instead, if Alice and Bob can make a good guess about the error rate before the error correction, they can verify that their keys are similar after the error correction protocol. This verification can be done by utilizing properties of Low Density Parity Check codes used in the error correction. We compare the methods and show that by verification it is often possible to sacrifice less bits without compromising security. The improvement is heavily dependent on the error rate and the block length, but for a key produced by the IdQuantique system Clavis^2, the increase in the key rate is approximately 5 percent. We also show that for systems with large fluctuations in the error rate a combination of the two methods is optimal.



قيم البحث

اقرأ أيضاً

Quantum key distribution (QKD) offers a practical solution for secure communication between two distinct parties via a quantum channel and an authentic public channel. In this work, we consider different approaches to the quantum bit error rate (QBER ) estimation at the information reconciliation stage of the post-processing procedure. For reconciliation schemes employing low-density parity-check (LDPC) codes, we develop a novel syndrome-based QBER estimation algorithm. The algorithm suggested is suitable for irregular LDPC codes and takes into account punctured and shortened bits. Testing our approach in a real QKD setup, we show that an approach combining the proposed algorithm with conventional QBER estimation techniques allows one to improve the accuracy of the QBER estimation.
218 - Kosuke Fukui , Akihisa Tomita , 2018
To implement fault-tolerant quantum computation with continuous variables, the Gottesman--Kitaev--Preskill (GKP) qubit has been recognized as an important technological element. We have proposed a method to reduce the required squeezing level to real ize large scale quantum computation with the GKP qubit [Phys. Rev. X. {bf 8}, 021054 (2018)], harnessing the virtue of analog information in the GKP qubits. In the present work, to reduce the number of qubits required for large scale quantum computation, we propose the tracking quantum error correction, where the logical-qubit level quantum error correction is partially substituted by the single-qubit level quantum error correction. In the proposed method, the analog quantum error correction is utilized to make the performances of the single-qubit level quantum error correction almost identical to those of the logical-qubit level quantum error correction in a practical noise level. The numerical results show that the proposed tracking quantum error correction reduces the number of qubits during a quantum error correction process by the reduction rate $left{{2(n-1)times4^{l-1}-n+1}right}/({2n times 4^{l-1}})$ for $n$-cycles of the quantum error correction process using the Knills $C_{4}/C_{6}$ code with the concatenation level $l$. Hence, the proposed tracking quantum error correction has great advantage in reducing the required number of physical qubits, and will open a new way to bring up advantage of the GKP qubits in practical quantum computation.
149 - W. Dur , H. J. Briegel 2007
We give a review on entanglement purification for bipartite and multipartite quantum states, with the main focus on theoretical work carried out by our group in the last couple of years. We discuss entanglement purification in the context of quantum communication, where we emphasize its close relation to quantum error correction. Various bipartite and multipartite entanglement purification protocols are discussed, and their performance under idealized and realistic conditions is studied. Several applications of entanglement purification in quantum communication and computation are presented, which highlights the fact that entanglement purification is a fundamental tool in quantum information processing.
106 - Zhengwei Liu 2019
Graph theory is important in information theory. We introduce a quantization process on graphs and apply the quantized graphs in quantum information. The quon language provides a mathematical theory to study such quantized graphs in a general framewo rk. We give a new method to construct graphical quantum error correcting codes on quantized graphs and characterize all optimal ones. We establish a further connection to geometric group theory and construct quantum low-density parity-check stabilizer codes on the Cayley graphs of groups. Their logical qubits can be encoded by the ground states of newly constructed exactly solvable models with translation-invariant local Hamiltonians. Moreover, the Hamiltonian is gapped in the large limit when the underlying group is infinite.
A central challenge for the scaling of quantum computing systems is the need to control all qubits in the system without a large overhead. A solution for this problem in classical computing comes in the form of so called crossbar architectures. Recen tly we made a proposal for a large scale quantum processor~[Li et al. arXiv:1711.03807 (2017)] to be implemented in silicon quantum dots. This system features a crossbar control architecture which limits parallel single qubit control, but allows the scheme to overcome control scaling issues that form a major hurdle to large scale quantum computing systems. In this work, we develop a language that makes it possible to easily map quantum circuits to crossbar systems, taking into account their architecture and control limitations. Using this language we show how to map well known quantum error correction codes such as the planar surface and color codes in this limited control setting with only a small overhead in time. We analyze the logical error behavior of this surface code mapping for estimated experimental parameters of the crossbar system and conclude that logical error suppression to a level useful for real quantum computation is feasible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا