ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation and stabilization of entangled coherent states for the vibrational modes of a trapped ion

93   0   0.0 ( 0 )
 نشر من قبل Zhirong Zhong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a scheme for preparation of entangled coherent states for the motion of an ion in a two-dimensional anisotropic trap. In the scheme, the ion is driven by four laser beams along different directions in the ion trap plane, resulting in carrier excitation and couplings between the internal and external degrees of freedom. When the total quantum number of the vibrational modes initially has a definite parity, the competition between the unitary dynamics and spontaneous emission will force the system to evolve to a steady state, where the vibrational modes are in a two-mode cat state. We show that the method can be extended to realization of entangled coherent states for three vibrational modes of an ion in a three-dimensional anisotropic trap.

قيم البحث

اقرأ أيضاً

Vibrational degrees of freedom in trapped-ion systems have recently been gaining attention as a quantum resource, beyond the role as a mediator for entangling quantum operations on internal degrees of freedom, because of the large available Hilbert s pace. The vibrational modes can be represented as quantum harmonic oscillators and thus offer a Hilbert space with infinite dimension. Here we review recent theoretical and experimental progress in the coherent manipulation of the vibrational modes, including bosonic encoding schemes in quantum information, reliable and efficient measurement techniques, and quantum operations that allow various quantum simulations and quantum computation algorithms. We describe experiments using the vibrational modes, including the preparation of non-classical states, molecular vibronic sampling, and applications in quantum thermodynamics. We finally discuss the potential prospects and challenges of trapped-ion vibrational-mode quantum information processing.
We propose a method to generate entangled states of the vibrational modes of N membranes which are coupled to a cavity mode via the radiation pressure. Using sideband excitations, we show that arbitrary entangled states of vibrational modes of differ ent membranes can be produced in principle by sequentially applying a series of classical pulses with desired frequencies, phases and durations. As examples, we show how to synthesize several typical entangled states, for example, Bell states, NOON states, GHZ states and W states. The environmental effect, information leakage, and experimental feasibility are briefly discussed. Our proposal can also be applied to other experimental setups of optomechanical systems, in which many mechanical resonators are coupled to a common sing-mode cavity field via the radiation pressure.
A M{o}lmer-S{o}rensen entangling gate is realized for pairs of trapped $^{111}$Cd$^+$ ions using magnetic-field insensitive clock states and an implementation offering reduced sensitivity to optical phase drifts. The gate is used to generate the comp lete set of four entangled states, which are reconstructed and evaluated with quantum-state tomography. An average target-state fidelity of 0.79 is achieved, limited by available laser power and technical noise. The tomographic reconstruction of entangled states demonstrates universal quantum control of two ion-qubits, which through multiplexing can provide a route to scalable architectures for trapped-ion quantum computing.
394 - M. Mamaev , L. C. G. Govia , 2017
We analyze a modified Bose-Hubbard model, where two cavities having on-site Kerr interactions are subject to two-photon driving and correlated dissipation. We derive an exact solution for the steady state of this interacting driven-dissipative system , and use it show that the system permits the preparation and stabilization of pure entangled non-Gaussian states, so-called entangled cat states. Unlike previous proposals for dissipative stabilization of such states, our approach requires only a linear coupling to a single engineered reservoir (as opposed to nonlinear couplings to two or more reservoirs). Our scheme is within the reach of state-of-the-art experiments in circuit QED.
Entangled coherent states are shown to emerge, with high fidelity, when mixing coherent and squeezed vacuum states of light on a beam-splitter. These maximally entangled states, where photons bunch at the exit of a beamsplitter, are measured experime ntally by Fock-state projections. Entanglement is examined theoretically using a Bell-type nonlocality test and compared with ideal entangled coherent states. We experimentally show nearly perfect similarity with entangled coherent states for an optimal ratio of coherent and squeezed vacuum light. In our scheme, entangled coherent states are generated deterministically with small amplitudes, which could be beneficial, for example, in deterministic distribution of entanglement over long distances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا