ترغب بنشر مسار تعليمي؟ اضغط هنا

Passport: Enabling Accurate Country-Level Router Geolocation using Inaccurate Sources

63   0   0.0 ( 0 )
 نشر من قبل Muzammil Abdul Rehman
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

When does Internet traffic cross international borders? This question has major geopolitical, legal and social implications and is surprisingly difficult to answer. A critical stumbling block is a dearth of tools that accurately map routers traversed by Internet traffic to the countries in which they are located. This paper presents Passport: a new approach for efficient, accurate country-level router geolocation and a system that implements it. Passport provides location predictions with limited active measurements, using machine learning to combine information from IP geolocation databases, router hostnames, whois records, and ping measurements. We show that Passport substantially outperforms existing techniques, and identify cases where paths traverse countries with implications for security, privacy, and performance.



قيم البحث

اقرأ أيضاً

The Internet is composed of routing devices connected between them and organized into independent administrative entities: the Autonomous Systems. The existence of different types of Autonomous Systems (like large connectivity providers, Internet Ser vice Providers or universities) together with geographical and economical constraints, turns the Internet into a complex modular and hierarchical network. This organization is reflected in many properties of the Internet topology, like its high degree of clustering and its robustness. In this work, we study the modular structure of the Internet router-level graph in order to assess to what extent the Autonomous Systems satisfy some of the known notions of community structure. We show that the modular structure of the Internet is much richer than what can be captured by the current community detection methods, which are severely affected by resolution limits and by the heterogeneity of the Autonomous Systems. Here we overcome this issue by using a multiresolution detection algorithm combined with a small sample of nodes. We also discuss recent work on community structure in the light of our results.
In-network computation has been widely used to accelerate data-intensive distributed applications. Some computational tasks, traditional performed on servers, are offloaded to the network (i.e. programmable switches). However, the computational capac ity of programmable switches is limited to simple integer arithmetic operations while many of applications require on-the-fly floating-point operations. To address this issue, prior approaches either adopt a float-to-integer method or directly offload computational tasks to the local CPUs of switches, incurring accuracy loss and delayed processing. To this end, we propose NetFC, a table-lookup method to achieve on-the-fly in-network floating-point arithmetic operations nearly without accuracy loss. NetFC adopts a divide-and-conquer mechanism that converts the original huge table into several much small tables together with some integer operations. NetFC adopts a scaling-factor mechanism for computational accuracy improvement, and a prefix-based lossless table compression method to reduce the memory overhead. We use different types of datasets to evaluate NetFC. The experimental results show that the average accuracy of NetFC can be as high as up to 99.94% at worst with only 448KB memory consumption. Furthermore, we integrate NetFC into Sonata for detecting Slowloris attack, yielding significant decrease of detection delay.
Real-time tweets can provide useful information on evolving events and situations. Geotagged tweets are especially useful, as they indicate the location of origin and provide geographic context. However, only a small portion of tweets are geotagged, limiting their use for situational awareness. In this paper, we adapt, improve, and evaluate a state-of-the-art deep learning model for city-level geolocation prediction, and integrate it with a visual analytics system tailored for real-time situational awareness. We provide computational evaluations to demonstrate the superiority and utility of our geolocation prediction model within an interactive system.
Higher dimensional classification has attracted more attentions with increasing demands for more flexible services in the Internet. In this paper, we present the design and implementation of a two dimensional router (TwoD router), that makes forwardi ng decisions based on both destination and source addresses. This TwoD router is also a key element in our current effort towards two dimensional IP routing. With one more dimension, the forwarding table will grow explosively given a straightforward implementation. As a result, it is impossible to fit the forwarding table to the current TCAM, which is the de facto standard despite its limited capacity. To solve the explosion problem, we propose a forwarding table structure with a novel separation of TCAM and SRAM. As such, we move the redundancies in expensive TCAM to cheaper SRAM, while the lookup speed is comparable with conventional routers. We also design the incremental update algorithms that minimize the number of accesses to memory. We evaluate our design with a real implementation on a commercial router, Bit-Engine 12004, with real data sets. Our design does not need new devices, which is favorable for adoption. The results also show that the performance of our TwoD router is promising.
Qubit transmission protocols are presently point-to-point, and thus restrictive in their functionality. A quantum router is necessary for the quantum Internet to become a reality. We present a quantum router design based on teleportation, as well as mechanisms for entangled pair management. The prototype was validated using a quantum simulator.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا