ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-stage Best-scored Random Forest for Large-scale Regression

93   0   0.0 ( 0 )
 نشر من قبل Hanyuan Hang
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel method designed for large-scale regression problems, namely the two-stage best-scored random forest (TBRF). Best-scored means to select one regression tree with the best empirical performance out of a certain number of purely random regression tree candidates, and two-stage means to divide the original random tree splitting procedure into two: In stage one, the feature space is partitioned into non-overlapping cells; in stage two, child trees grow separately on these cells. The strengths of this algorithm can be summarized as follows: First of all, the pure randomness in TBRF leads to the almost optimal learning rates, and also makes ensemble learning possible, which resolves the boundary discontinuities long plaguing the existing algorithms. Secondly, the two-stage procedure paves the way for parallel computing, leading to computational efficiency. Last but not least, TBRF can serve as an inclusive framework where different mainstream regression strategies such as linear predictor and least squares support vector machines (LS-SVMs) can also be incorporated as value assignment approaches on leaves of the child trees, depending on the characteristics of the underlying data sets. Numerical assessments on comparisons with other state-of-the-art methods on several large-scale real data sets validate the promising prediction accuracy and high computational efficiency of our algorithm.



قيم البحث

اقرأ أيضاً

306 - Hanyuan Hang , Xiaoyu Liu , 2019
We propose an algorithm named best-scored random forest for binary classification problems. The terminology best-scored means to select the one with the best empirical performance out of a certain number of purely random tree candidates as each singl e tree in the forest. In this way, the resulting forest can be more accurate than the original purely random forest. From the theoretical perspective, within the framework of regularized empirical risk minimization penalized on the number of splits, we establish almost optimal convergence rates for the proposed best-scored random trees under certain conditions which can be extended to the best-scored random forest. In addition, we present a counterexample to illustrate that in order to ensure the consistency of the forest, every dimension must have the chance to be split. In the numerical experiments, for the sake of efficiency, we employ an adaptive random splitting criterion. Comparative experiments with other state-of-art classification methods demonstrate the accuracy of our best-scored random forest.
This paper presents a brand new nonparametric density estimation strategy named the best-scored random forest density estimation whose effectiveness is supported by both solid theoretical analysis and significant experimental performance. The termino logy best-scored stands for selecting one density tree with the best estimation performance out of a certain number of purely random density tree candidates and we then name the selected one the best-scored random density tree. In this manner, the ensemble of these selected trees that is the best-scored random density forest can achieve even better estimation results than simply integrating trees without selection. From the theoretical perspective, by decomposing the error term into two, we are able to carry out the following analysis: First of all, we establish the consistency of the best-scored random density trees under $L_1$-norm. Secondly, we provide the convergence rates of them under $L_1$-norm concerning with three different tail assumptions, respectively. Thirdly, the convergence rates under $L_{infty}$-norm is presented. Last but not least, we also achieve the above convergence rates analysis for the best-scored random density forest. When conducting comparative experiments with other state-of-the-art density estimation approaches on both synthetic and real data sets, it turns out that our algorithm has not only significant advantages in terms of estimation accuracy over other methods, but also stronger resistance to the curse of dimensionality.
133 - Hanyuan Hang , Yuchao Cai , 2019
Single-level density-based approach has long been widely acknowledged to be a conceptually and mathematically convincing clustering method. In this paper, we propose an algorithm called best-scored clustering forest that can obtain the optimal level and determine corresponding clusters. The terminology best-scored means to select one random tree with the best empirical performance out of a certain number of purely random tree candidates. From the theoretical perspective, we first show that consistency of our proposed algorithm can be guaranteed. Moreover, under certain mild restrictions on the underlying density functions and target clusters, even fast convergence rates can be achieved. Last but not least, comparisons with other state-of-the-art clustering methods in the numerical experiments demonstrate accuracy of our algorithm on both synthetic data and several benchmark real data sets.
We propose a novel algorithm for large-scale regression problems named histogram transform ensembles (HTE), composed of random rotations, stretchings, and translations. First of all, we investigate the theoretical properties of HTE when the regressio n function lies in the H{o}lder space $C^{k,alpha}$, $k in mathbb{N}_0$, $alpha in (0,1]$. In the case that $k=0, 1$, we adopt the constant regressors and develop the na{i}ve histogram transforms (NHT). Within the space $C^{0,alpha}$, although almost optimal convergence rates can be derived for both single and ensemble NHT, we fail to show the benefits of ensembles over single estimators theoretically. In contrast, in the subspace $C^{1,alpha}$, we prove that if $d geq 2(1+alpha)/alpha$, the lower bound of the convergence rates for single NHT turns out to be worse than the upper bound of the convergence rates for ensemble NHT. In the other case when $k geq 2$, the NHT may no longer be appropriate in predicting smoother regression functions. Instead, we apply kernel histogram transforms (KHT) equipped with smoother regressors such as support vector machines (SVMs), and it turns out that both single and ensemble KHT enjoy almost optimal convergence rates. Then we validate the above theoretical results by numerical experiments. On the one hand, simulations are conducted to elucidate that ensemble NHT outperform single NHT. On the other hand, the effects of bin sizes on accuracy of both NHT and KHT also accord with theoretical analysis. Last but not least, in the real-data experiments, comparisons between the ensemble KHT, equipped with adaptive histogram transforms, and other state-of-the-art large-scale regression estimators verify the effectiveness and accuracy of our algorithm.
Random forests are powerful non-parametric regression method but are severely limited in their usage in the presence of randomly censored observations, and naively applied can exhibit poor predictive performance due to the incurred biases. Based on a local adaptive representation of random forests, we develop its regression adjustment for randomly censored regression quantile models. Regression adjustment is based on a new estimating equation that adapts to censoring and leads to quantile score whenever the data do not exhibit censoring. The proposed procedure named {it censored quantile regression forest}, allows us to estimate quantiles of time-to-event without any parametric modeling assumption. We establish its consistency under mild model specifications. Numerical studies showcase a clear advantage of the proposed procedure.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا