ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of defect-induced cooling on graphene hot-electron bolometers

61   0   0.0 ( 0 )
 نشر من قبل Paola Barbara
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

At high phonon temperature, defect-mediated electron-phonon collisions (supercollisions) in graphene allow for larger energy transfer and faster cooling of hot electrons than the normal, momentum-conserving electron-phonon collisions. Disorder also affects the heat flow between electrons and phonons at very low phonon temperature, where the phonon wavelength exceeds the mean free path. In both cases, the cooling rate is predicted to exhibit a characteristic cubic power law dependence on the electron temperature, markedly different from the T^4 dependence predicted for pristine graphene. The impact of defect-induced cooling on the performance of optoelectronic devices is still largely unexplored. Here we study the cooling mechanism of hot-electron bolometers based on epitaxial graphene quantum dots where the defect density can be controlled with the fabrication process. The devices with high defect density exhibit the cubic power law. Defect-induced cooling yields a slower increase of the thermal conductance with increasing temperature, thereby greatly enhancing the device responsivity compared to devices with lower defect density and operating with normal-collision cooling.



قيم البحث

اقرأ أيضاً

133 - A. C. Betz , F. Vialla , D. Brunel 2012
We have investigated the energy loss of hot electrons in metallic graphene by means of GHz noise thermometry at liquid helium temperature. We observe the electronic temperature T / V at low bias in agreement with the heat diffusion to the leads descr ibed by the Wiedemann-Franz law. We report on $Tproptosqrt{V}$ behavior at high bias, which corresponds to a T4 dependence of the cooling power. This is the signature of a 2D acoustic phonon cooling mechanism. From a heat equation analysis of the two regimes we extract accurate values of the electron-acoustic phonon coupling constant $Sigma$ in monolayer graphene. Our measurements point to an important effect of lattice disorder in the reduction of $Sigma$, not yet considered by theory. Moreover, our study provides a strong and firm support to the rising field of graphene bolometric detectors.
126 - Hasan Sahin , Salim Ciraci 2011
Motivated by the state of the art method for fabricating high density periodic nanoscale defects in graphene, the structural, mechanical and electronic properties of defect-patterned graphene nanomeshes including diverse morphologies of adatoms and h oles are investigated by means of first-principles calculations within density functional theory. It is found that various patterns of adatom groups yield metallic or semimetallic, even semiconducting behavior and specific patterns can be in a magnetic state. Even though the patterns of single adatoms dramatically alter the electronic structure of graphene, adatom groups of specific symmetry can maintain the Dirac fermion behavior. Nanoholes forming nanomesh are also investigated. Depending on the interplay between the repeat periodicity and the geometry of the hole, the nanomesh can be in different states ranging from metallic to semiconducting including semimetallic state with the bands crossing linearly at the Fermi level. We showed that forming periodically repeating superstructures in graphene matrix can develop a promising technique to engineer nanomaterials with desired electronic and magnetic properties.
Controlling energy flows in solids through switchable electron-lattice cooling can grant access to a range of interesting and potentially useful energy transport phenomena. Here we discuss a unique switchable electron-lattice cooling mechanism arisin g in graphene due to phonon emission mediated by resonant scattering on defects in crystal lattice, which displays interesting analogy to the Purcell effect in optics. This mechanism strongly enhances the electron-phonon cooling rate, since non-equilibrium carriers in the presence of momentum recoil due to disorder can access a larger phonon phase space and emit phonons more effciently. Resonant energy dependence of phonon emission translates into gate-tunable cooling rates, exhibiting giant enhancement of cooling occurring when the carrier energy is aligned with the electron resonance of the defect.
The broadband and ultrafast photoresponse of graphene has been extensively studied in recent years, although the photoexcited carrier dynamics is still far from being completely understood. Different experimental approaches imply either one of two fu ndamentally different scattering mechanisms for hot electrons. One is high-energy optical phonons, while the other is disorder-driven supercollisions with acoustic phonons. However, the concurrent relaxation via both optical and acoustic phonons has not been considered so far, hindering the interpretation of different experiments within a unified framework. Here we expand the optical phonon-mediated cooling model, to include electron scattering with the acoustic phonons. By assuming the enhancement of electron-acoustic phonon supercollisions from the localized defect at the photothermoelectric current-generating interface, we provide a broader perspective to the ultrafast photoresponse of graphene, highlighting the previously overlooked effect of the interface for cooling dynamics. We show that the transient photothermoelectric response, which has been attributed exclusively to supercollisions, can be successfully explained without rejecting the established optical phonon relaxation pathway, demonstrating that the two cooling mechanisms are not mutually exclusive but complement each other.
We theoretically study the inelastic scattering rate and the carrier mean free path for energetic hot electrons in graphene, including both electron-electron and electron-phonon interactions. Taking account of optical phonon emission and electron-ele ctron scattering, we find that the inelastic scattering time $tau sim 10^{-2}-10^{-1} mathrm{ps}$ and the mean free path $l sim 10-10^2 mathrm{nm}$ for electron densities $n = 10^{12}-10^{13} mathrm{cm}^{-2}$. In particular, we find that the mean free path exhibits a finite jump at the phonon energy $200 mathrm{meV}$ due to electron-phonon interaction. Our results are directly applicable to device structures where ballistic transport is relevant with inelastic scattering dominating over elastic scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا