ﻻ يوجد ملخص باللغة العربية
We theoretically study the inelastic scattering rate and the carrier mean free path for energetic hot electrons in graphene, including both electron-electron and electron-phonon interactions. Taking account of optical phonon emission and electron-electron scattering, we find that the inelastic scattering time $tau sim 10^{-2}-10^{-1} mathrm{ps}$ and the mean free path $l sim 10-10^2 mathrm{nm}$ for electron densities $n = 10^{12}-10^{13} mathrm{cm}^{-2}$. In particular, we find that the mean free path exhibits a finite jump at the phonon energy $200 mathrm{meV}$ due to electron-phonon interaction. Our results are directly applicable to device structures where ballistic transport is relevant with inelastic scattering dominating over elastic scattering.
Graphene samples can have a very high carrier mobility if influences from the substrate and the environment are minimized. Embedding a graphene sheet into a heterostructure with hexagonal boron nitride (hBN) on both sides was shown to be a particular
We study conductance across a twisted bilayer graphene coupled to single-layer graphene leads in two setups: a flake of graphene on top of an infinite graphene ribbon and two overlapping semi-infinite graphene ribbons. We find conductance strongly de
Ballistic transport of hot electrons in a quantum Hall edge channel is attractive for studying electronic analog of quantum optics, where the edge potential profile is an important parameter that governs the charge velocity and scattering by longitud
We work out a theory of the Coulomb drag current created under the ballistic transport regime in a one-dimensional nanowire by a ballistic non-Ohmic current in a nearby parallel nanowire. As in the Ohmic case, we predict sharp oscillation of the drag
We present results of experimental and theoretical investigations of electron transport through stub-shaped waveguides or electron stub tuners (ESTs) in the ballistic regime. Measurements of the conductance G as a function of voltages, applied to dif