ﻻ يوجد ملخص باللغة العربية
We present fully polynomial approximation schemes for a broad class of Holant problems with complex edge weights, which we call Holant polynomials. We transform these problems into partition functions of abstract combinatorial structures known as polymers in statistical physics. Our method involves establishing zero-free regions for the partition functions of polymer models and using the most significant terms of the cluster expansion to approximate them. Results of our technique include new approximation and sampling algorithms for a diverse class of Holant polynomials in the low-temperature regime and approximation algorithms for general Holant problems with small signature weights. Additionally, we give randomised approximation and sampling algorithms with faster running times for more restrictive classes. Finally, we improve the known zero-free regions for a perfect matching polynomial.
This paper formalizes connections between stability of polynomials and convergence rates of Markov Chain Monte Carlo (MCMC) algorithms. We prove that if a (multivariate) partition function is nonzero in a region around a real point $lambda$ then spec
We study the problem of allocating $m$ items to $n$ agents subject to maximizing the Nash social welfare (NSW) objective. We write a novel convex programming relaxation for this problem, and we show that a simple randomized rounding algorithm gives a
We consider a fundamental algorithmic question in spectral graph theory: Compute a spectral sparsifier of random-walk matrix-polynomial $$L_alpha(G)=D-sum_{r=1}^dalpha_rD(D^{-1}A)^r$$ where $A$ is the adjacency matrix of a weighted, undirected graph,
We study the generalized min sum set cover (GMSSC) problem, wherein given a collection of hyperedges $E$ with arbitrary covering requirements $k_e$, the goal is to find an ordering of the vertices to minimize the total cover time of the hyperedges; a
Let $x_1$ and $x_k$ be the least and the largest zeros of the Laguerre or Jacobi polynomial of degree $k.$ We shall establish sharp inequalities of the form $x_1 <A, x_k >B,$ which are uniform in all the parameters involved. Together with inequalitie