ترغب بنشر مسار تعليمي؟ اضغط هنا

Lexicographic products as compact spaces of the first Baire clas

69   0   0.0 ( 0 )
 نشر من قبل Antonio Avil\\'es
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We use lexicographic products to give examples of compact spaces of first Baire class functions on a compact metric space that cannot be represented as spaces of functions with countably many discontinuities.



قيم البحث

اقرأ أيضاً

We study products of general topological spaces with Mengers covering property, and its refinements based on filters and semifilters. To this end, we extend the projection method from the classic real line topology to the Michael topology. Among othe r results, we prove that, assuming CH{}, every productively Lindelof space is productively Menger, and every productively Menger space is productively Hurewicz. None of these implications is reversible.
A theorem by Norman L. Noble from 1970 asserts that every product of completely regular, locally pseudo-compact k_R-spaces is a k_R-space. As a consequence, all direct products of locally compact Hausdorff spaces are k_R-spaces. We provide a streamlined proof for this fact.
W. Hurewicz proved that analytic Menger sets of reals are $sigma$-compact and that co-analytic completely Baire sets of reals are completely metrizable. It is natural to try to generalize these theorems to projective sets. This has previously been ac complished by $V = L$ for projective counterexamples, and the Axiom of Projective Determinacy for positive results. For the first problem, the first author, S. Todorcevic, and S. Tokgoz have produced a finer analysis with much weaker axioms. We produce a similar analysis for the second problem, showing the two problems are essentially equivalent. We also construct in ZFC a separable metrizable space with $omega$-th power completely Baire, yet lacking a dense completely metrizable subspace. This answers a question of Eagle and Tall in Abstract Model Theory.
In this paper, we intend to show that under not too restrictive conditions, results much stronger than the one obtained earlier by Hejduk could be established in category bases.
107 - Leijie Wang , Taras Banakh 2019
For a Tychonoff space $X$ and a subspace $Ysubsetmathbb R$, we study Baire category properties of the space $C_{downarrow F}(X,Y)$ of continuous functions from $X$ to $Y$, endowed with the Fell hypograph topology. We characterize pairs $X,Y$ for whic h the function space $C_{downarrow F}(X,Y)$ is $infty$-meager, meager, Baire, Choquet, strong Choquet, (almost) complete-metrizable or (almost) Polish.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا