ﻻ يوجد ملخص باللغة العربية
We study products of general topological spaces with Mengers covering property, and its refinements based on filters and semifilters. To this end, we extend the projection method from the classic real line topology to the Michael topology. Among other results, we prove that, assuming CH{}, every productively Lindelof space is productively Menger, and every productively Menger space is productively Hurewicz. None of these implications is reversible.
We construct Menger subsets of the real line whose product is not Menger in the plane. In contrast to earlier constructions, our approach is purely combinatorial. The set theoretic hypothesis used in our construction is far milder than earlier ones,
We construct, using mild combinatorial hypotheses, a real Menger set that is not Scheepers, and two real sets that are Menger in all finite powers, with a non-Menger product. By a forcing-theoretic argument, we show that the same holds in the Blass--
We use lexicographic products to give examples of compact spaces of first Baire class functions on a compact metric space that cannot be represented as spaces of functions with countably many discontinuities.
W. Hurewicz proved that analytic Menger sets of reals are $sigma$-compact and that co-analytic completely Baire sets of reals are completely metrizable. It is natural to try to generalize these theorems to projective sets. This has previously been ac
A theorem by Norman L. Noble from 1970 asserts that every product of completely regular, locally pseudo-compact k_R-spaces is a k_R-space. As a consequence, all direct products of locally compact Hausdorff spaces are k_R-spaces. We provide a streamlined proof for this fact.