ﻻ يوجد ملخص باللغة العربية
Supernova remnants (SNRs) that contain pulsar wind nebulae (PWNe) are characterized by distinct evolutionary stages. In very young systems, the PWN drives a shock into the innermost supernova (SN) material, giving rise to low-excitation lines and an infrared (IR) continuum from heated dust grains. These observational signatures make it possible to cleanly measure the properties of the deepest SN ejecta layers that can, in turn, provide constraints on the SN progenitor. We present Herschel Space Observatory far-IR observations of the PWN in the Galactic SNR Kes 75, containing the youngest known pulsar that exhibited magnetar-like activity. We detect highly-broadened oxygen and carbon line emission that arises from the SN ejecta encountered by the PWN. We also detect a small amount (a few thousandths of a solar mass) of shock-heated dust that spatially coincides with the ejecta material and was likely formed in the SN explosion. We use hydrodynamical models to simulate the evolution of Kes 75 and find that the PWN has so far swept up 0.05-0.1 solar masses of SN ejecta. Using explosion and nucleosynthesis models for different progenitor masses in combination with shock models, we compare the predicted far-IR emission with the observed line intensities and find that lower mass and explosion energy SN progenitors with mildly mixed ejecta profiles and comparable abundance fractions of carbon and oxygen are favored over higher mass ones. We conclude that Kes 75 likely resulted from an 8-12 solar-mass progenitor, providing further evidence that lower energy explosions of such progenitors can give rise to magnetars.
PSR J1846-0258 is a radio-quiet rotation-powered pulsar at the center of Supernova remnant Kes 75. It is the youngest pulsar (~723 year) of all known pulsars and slows down very predictably since its discovery in 2000. Till June 7, 2006 very stable b
We report new Chandra X-ray observations of the shell supernova remnant (SNR) Kes 75 (G29.7-0.3) containing a pulsar and pulsar-wind nebula (PWN). Expansion of the PWN is apparent across the four epochs, 2000, 2006, 2009, and 2016. We find an expansi
The supernova remnant (SNR) Kes 75/PSR J1846-0258 association can be regarded as certain due to the accurate location of young PSR J1846-0258 at the center of Kes 75 and the detected bright radio/X-ray synchrotron nebula surrounding the pulsar. We pr
The Vela supernova remnant (SNR) shows several ejecta fragments protruding beyond the forward shock (shrapnel). Recent studies have revealed high Si abundance in two shrapnel (A and G), located in opposite directions with respect to the SNR center. T
With presently known input physics and computer simulations in 1D, a self-consistent treatment of core collapse supernovae does not yet lead to successful explosions, while 2D models show some promise. Thus, there are strong indications that the dela