ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-frequency gravity waves in blue supergiants revealed by high-precision space photometry

394   0   0.0 ( 0 )
 نشر من قبل Dominic Bowman
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Almost all massive stars explode as supernovae and form a black hole or neutron star. The remnant mass and the impact of the chemical yield on subsequent star formation and galactic evolution strongly depend on the internal physics of the progenitor star, which is currently not well understood. The theoretical uncertainties of stellar interiors accumulate with stellar age, which is particularly pertinent for the blue supergiant phase. Stellar oscillations represent a unique method of probing stellar interiors, yet inference for blue supergiants is hampered by a dearth of observed pulsation modes. Here we report the detection of diverse variability in blue supergiants using the K2 and TESS space missions. The discovery of pulsation modes or an entire spectrum of low-frequency gravity waves in these stars allow us to map the evolution of hot massive stars towards the ends of their lives. Future asteroseismic modelling will provide constraints on ages, core masses, interior mixing, rotation and angular momentum transport. The discovery of variability in blue supergiants is a step towards a data-driven empirical calibration of theoretical evolution models for the most massive stars in the Universe.

قيم البحث

اقرأ أيضاً

We present an 80-d long uninterrupted high-cadence K2 light curve of the B1Iab supergiant rho Leo (HD 91316), deduced with the method of halo photometry. This light curve reveals a dominant frequency of $f_{rmrot}=0.0373$d$^{-1}$ and its harmonics. T his dominant frequency corresponds with a rotation period of 26.8d and is subject to amplitude and phase modulation. The K2 photometry additionally reveals multiperiodic low-frequency variability ($<1.5 $d$^{-1}$) and is in full agreement with low-cadence high-resolution spectroscopy assembled during 1800 days. The spectroscopy reveals rotational modulation by a dynamic aspherical wind with an amplitude of about 20km s$^{-1}$ in the H$alpha$ line, as well as photospheric velocity variations of a few km s$^{-1}$ at frequencies in the range 0.2 to 0.6 d$^{-1}$ in the SiIII 4567AA line. Given the large macroturbulence needed to explain the spectral line broadening of the star, we interpret the detected photospheric velocity as due to travelling super-inertial low-degree large-scale gravity waves with dominant tangential amplitudes and discuss why $rho$~Leo is an excellent target to study how the observed photospheric variability propagates into the wind.
An overview is presented of the recent advances in understanding the B[e] phenomenon among blue supergiant stars in light of high-angular resolution observations and with an emphasis on the results obtained by means of long baseline optical stellar i nterferometry. The focus of the review is on the circumstellar material and evolutionary phase of B[e] supergiants, but recent results on dust production in regular blue supergiants are also highlighted.
We present new constraints on the spectral index n_T of tensor fluctuations from the recent data obtained by the BICEP2 experiment. We found that the BICEP2 data alone slightly prefers a positive, blue, spectral index with n_T=1.36pm0.83 at 68 % c.l. . However, when a TT prior on the tensor amplitude coming from temperature anisotropy measurements is assumed we get n_T=1.67pm0.53 at 68 % c.l., ruling out a scale invariant $n_T=0$ spectrum at more than three standard deviations. These results are at odds with current bounds on the tensor spectral index coming from pulsar timing, Big Bang Nucleosynthesis, and direct measurements from the LIGO experiment. Considering only the possibility of a red, n_T<0 spectral index we obtain the lower limit n_T > -0.76 at 68 % c.l. (n_T>-0.09 when a TT prior is included).
The Perseus OB1 association hosts one of the most populous groupings of blue and red supergiants (Sgs) in the Galaxy. We discuss whether the massive O-type and blue/red Sg stars located in the Per OB1 region are members of the same population and exa mine their binary and runaway status. We gathered a total of 405 high-resolution spectra for 88 suitable candidates around 4.5 deg from the center of the association, and compiled Gaia DR2 astrometry for all of them. This was used to investigate membership and identify runaway stars. By obtaining high-precision radial velocity (RV) estimates, we investigated the RV distributions of sample and identified spectroscopic binaries (SBs). Most of the investigated stars belong to a physically linked population located at d = 2.5$pm$0.4 kpc. We identify 79 confirmed or likely members, and 5 member candidates. No important differences are detected in the distribution of parallaxes for stars in h and X Persei or the full sample. On the contrary, most O-type stars seem to be part of a differentiated population in terms of kinematical properties. In particular, the percentage of runaways among them (45%) is considerable higher than for the more evolved targets (that is below 5% in all cases). A similar tendency is also found for the percentage of clearly detected SBs, which already decreases from 15% to 10% when comparing the O star and B Sg samples, respectively, and practically vanishes in the cooler Sgs. All but 4 stars in our working sample can be considered as part of the same (interrelated) population. However, any further attempt to describe the empirical properties of this sample of massive stars in an evolutionary context must take into account that an important fraction of the O stars is - or has likely been - part of a binary/multiple system. In addition, some of the other more evolved targets may have also been affected by binary evolution.
188 - Shuai Zhang , Jeremy Orosco , 2021
High frequency thickness mode ultrasound is an energy-efficient way to atomize high-viscosity fluid at high flow rate into fine aerosol mists of micron-sized droplet distributions. However the complex physics of the atomization process is not well un derstood. It is found that with low power the droplet vibrates at low frequency (O[100 Hz]) when driven by high-frequency ultrasound (O[1 MHz] and above). To study the mechanism of the energy transfer that spans these vastly different timescales, we measure the droplets interfacial response to 6.6~MHz ultrasound excitation using high-speed digital holography. We show that the onset of low-frequency capillary waves is driven by feedback interplay between the acoustic radiation pressure distribution and the droplet surface. These dynamics are mediated by the Young-Laplace boundary between the droplet interior and ambient environment. Numerical simulations are performed via global optimization against the rigorously defined interfacial physics. The proposed pressure-interface feedback model is explicitly based on the pressure distribution hypothesis. For low power acoustic excitation, the simulations reveal a stable oscillatory feedback that induces capillary wave formation. The simulation results are confirmed with direct observations of the microscale droplet interface dynamics as provided by the high resolution holographic measurements. The pressure-interface feedback model accurately predicts the on-source vibration amplitude required to initiate capillary waves, and interfacial oscillation amplitude and frequency. The radiation pressure distribution is likewise confirmed with particle migration observations. Viscous effects on wave attenuation are also studied by comparing experimental and simulated results for a pure water droplet and 90% wt.- 10% wt. glycerol-water solution droplet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا