ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution spectroscopic study of massive blue and red supergiants in Per OB1

74   0   0.0 ( 0 )
 نشر من قبل Abel de Burgos
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Perseus OB1 association hosts one of the most populous groupings of blue and red supergiants (Sgs) in the Galaxy. We discuss whether the massive O-type and blue/red Sg stars located in the Per OB1 region are members of the same population and examine their binary and runaway status. We gathered a total of 405 high-resolution spectra for 88 suitable candidates around 4.5 deg from the center of the association, and compiled Gaia DR2 astrometry for all of them. This was used to investigate membership and identify runaway stars. By obtaining high-precision radial velocity (RV) estimates, we investigated the RV distributions of sample and identified spectroscopic binaries (SBs). Most of the investigated stars belong to a physically linked population located at d = 2.5$pm$0.4 kpc. We identify 79 confirmed or likely members, and 5 member candidates. No important differences are detected in the distribution of parallaxes for stars in h and X Persei or the full sample. On the contrary, most O-type stars seem to be part of a differentiated population in terms of kinematical properties. In particular, the percentage of runaways among them (45%) is considerable higher than for the more evolved targets (that is below 5% in all cases). A similar tendency is also found for the percentage of clearly detected SBs, which already decreases from 15% to 10% when comparing the O star and B Sg samples, respectively, and practically vanishes in the cooler Sgs. All but 4 stars in our working sample can be considered as part of the same (interrelated) population. However, any further attempt to describe the empirical properties of this sample of massive stars in an evolutionary context must take into account that an important fraction of the O stars is - or has likely been - part of a binary/multiple system. In addition, some of the other more evolved targets may have also been affected by binary evolution.


قيم البحث

اقرأ أيضاً

186 - Ben Davies , Emma Beasor 2019
Galactic, young massive star clusters are approximately coeval aggregates of stars, close enough to resolve the individual stars, massive enough to have produced large numbers of massive stars, and young enough for these stars to be in a pre-supernov a state. As such these objects represent powerful natural laboratories in which to study the evolution of massive stars. To be used in this way, it is crucial that accurate and precise distances are known, since this affects both the inferred luminosities of the cluster members and the age estimate for the cluster itself. Here we present distance estimates for three star clusters rich in Red Supergiants ($chi$ Per, NGC 7419 and Westerlund 1) based on their average astrometric parallaxes $bar{pi}$ in Gaia Data Release 2, where the measurement of $bar{pi}$ is obtained from a proper-motion screened sample of spectroscopically-confirmed cluster members. We determine distances of $d=2.25^{+0.16}_{-0.14}$kpc, $d=3.00^{+0.35}_{-0.29}$kpc, and $d=3.87^{+0.95}_{-0.64}$kpc for the three clusters respectively. We find that the dominant source of error is that in Gaias zero-point parallax offset $pi_{rm ZP}$, and we argue that more precise distances cannot be determined without an improved characterization of this quantity.
An overview is presented of the recent advances in understanding the B[e] phenomenon among blue supergiant stars in light of high-angular resolution observations and with an emphasis on the results obtained by means of long baseline optical stellar i nterferometry. The focus of the review is on the circumstellar material and evolutionary phase of B[e] supergiants, but recent results on dust production in regular blue supergiants are also highlighted.
The mass-loss rates of red supergiant stars (RSGs) are poorly constrained by direct measurements, and yet the subsequent evolution of these stars depends critically on how much mass is lost during the RSG phase. In 2012 the Geneva evolutionary group updated their mass-loss prescription for RSGs with the result that a 20 solar mass star now loses 10x more mass during the RSG phase than in the older models. Thus, higher mass RSGs evolve back through a second yellow supergiant phase rather than exploding as Type II-P supernovae, in accord with recent observations (the so-called RSG Problem). Still, even much larger mass-loss rates during the RSG phase cannot be ruled out by direct measurements of their current dust-production rates, as such mass-loss is episodic. Here we test the models by deriving a luminosity function for RSGs in the nearby spiral galaxy M31 which is sensitive to the total mass loss during the RSG phase. We carefully separate RSGs from asymptotic giant branch stars in the color-magnitude diagram following the recent method exploited by Yang and collaborators in their Small Magellanic Cloud studies. Comparing our resulting luminosity function to that predicted by the evolutionary models shows that the new prescription for RSG mass-loss does an excellent job of matching the observations, and we can readily rule out significantly larger values.
The quantitative study of the physical properties and chemical abundances of large samples of massive blue stars at different metallicities is a powerful tool to understand the nature and evolution of these objects. Their analysis beyond the Milky Wa y is challenging, nonetheless it is doable and the best way to investigate their behavior in different environments. Fulfilling this task in an objective way requires the implementation of automatic analysis techniques that can perform the analyses systematically, minimizing at the same time any possible bias. As part of the ARAUCARIA project we carry out the first quantitative spectroscopic analysis of a sample of 12 B-type supergiants in the galaxy NGC55 at 1.94 Mpc away. By applying the methodology developed in this work, we derive their stellar parameters, chemical abundances and provide a characterization of the present-day metallicity of their host galaxy. Based on the characteristics of the stellar atmosphere/line formation code FASTWIND, we designed and created a grid of models for the analysis of massive blue supergiant stars. Along with this new grid, we implemented a spectral analysis algorithm. Both tools were specially developed to perform fully consistent quantitative spectroscopic analyses of low spectral resolution of B-type supergiants in a fast and objective way. We present the main characteristics of our FASTWIND model grid and perform a number of tests to investigate the reliability of our methodology. The automatic tool is applied afterward to a sample of 12 B-type supergiant stars in NGC55, deriving the stellar parameters and abundances. The results indicate that our stars are part of a young population evolving towards a red supergiant phase. The derived chemical composition hints to an average metallicity similar to the one of the Large Magellanic Cloud, with no indication of a spatial trend across the galaxy.
79 - Yi Ren 2019
Based on previously selected preliminary samples of Red Supergiants (RSGs) in M33 and M31, the foreground stars and luminous Asymptotic Giant Branch stars (AGBs) are further excluded, which leads to the samples of 717 RSGs in M33 and 420 RSGs in M31. With the time-series data from the iPTF survey spanning nearly 2000 days, the period and amplitude of RSGs are analyzed. According to the lightcurves characteristics, they are classified into four categories in which 84 and 56 objects in M33 and M31 respectively are semi-regular variables. For these semi-regular variables, the pulsation mode is identified by comparing with the theoretical model, which yielded 19 (7) sources in the first overtone mode in M33 (M31), and the other 65 (49) RSGs in M33 (M31) in the fundamental mode. The period-luminosity (P-L) relation is analyzed for the RSGs in the fundamental mode. It is found the P-L relation is tight in the infrared, i.e. the 2MASS $JHK_{rm S}$ bands and the short-wavelength bands of Spitzer. Meanwhile, the inhomogeneous extinction causes the P-L relation scattering in the $V$ band, and the dust emission causes the less tight P-L relation in the Spitzer/[8.0] and [24] bands. The derived P-L relations in the 2MASS/$K_{rm S}$ band are in agreement with those of RSGs in SMC, LMC and the Milky Way within the uncertainty range. It is found that the number ratio of RSGs pulsating in the fundamental mode to the first overtone mode increases with metallicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا