ترغب بنشر مسار تعليمي؟ اضغط هنا

The extended halo of NGC 2682 (M 67) from Gaia DR2

71   0   0.0 ( 0 )
 نشر من قبل Ricardo Carrera R.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Carrera




اسأل ChatGPT حول البحث

Context: NGC 2682 is a nearby open cluster, approximately 3.5 Gyr old. Dynamically, most open clusters should dissolve on shorter timescales, of ~ 1 Gyr. Having survived until now, NGC 2682 was likely much more massive in the past, and is bound to have an interesting dynamical history. Aims: We investigate the spatial distribution of NGC 2682 stars to constrain its dynamical evolution, especially focusing on the marginally bound stars in the cluster outskirts. Methods: We use Gaia DR2 data to identify NGC 2682 members up to a distance of ~150 pc (10 degrees). Two methods (Clusterix and UPMASK) are applied to this end. We estimate distances to obtain three-dimensional stellar positions using a Bayesian approach to parallax inversion, with an appropriate prior for star clusters. We calculate the orbit of NGC 2682 using the GRAVPOT16 software. Results: The cluster extends up to 200 arcmin (50 pc) which implies that its size is at least twice as previously believed. This exceeds the cluster Hill sphere based on the Galactic potential at the distance of NGC 2682. Conclusions: The extra-tidal stars in NGC 2682 may originate from external perturbations such as disk shocking or dynamical evaporation from two-body relaxation. The former origin is plausible given the orbit of NGC 2682, which crossed the Galactic disk ~40 Myr ago.

قيم البحث

اقرأ أيضاً

The combination of precise radial velocities from multi-object spectroscopy and highly accurate proper motions from Gaia DR2 opens up the possibility for detailed 3D kinematic studies of young star forming regions and clusters. Here, we perform such an analysis by combining Gaia-ESO Survey spectroscopy with Gaia astrometry for ~900 members of the Lagoon Nebula cluster, NGC 6530. We measure the 3D velocity dispersion of the region to be $5.35^{+0.39}_{-0.34}$~km~s$^{-1}$, which is large enough to suggest the region is gravitationally unbound. The velocity ellipsoid is anisotropic, implying that the region is not sufficiently dynamically evolved to achieve isotropy, though the central part of NGC 6530 does exhibit velocity isotropy that suggests sufficient mixing has occurred in this denser part. We find strong evidence that the stellar population is expanding, though this is preferentially occurring in the declination direction and there is very little evidence for expansion in the right ascension direction. This argues against a simple radial expansion pattern, as predicted by models of residual gas expulsion. We discuss these findings in the context of cluster formation, evolution and disruption theories.
Westerlund 1 (Wd1) is potentially the largest star cluster in the Galaxy. That designation critically depends upon the distance to the cluster, yet the cluster is highly obscured, making luminosity-based distance estimates difficult. Using {it Gaia} Data Release 2 (DR2) parallaxes and Bayesian inference, we infer a parallax of $0.35^{+0.07}_{-0.06}$ mas corresponding to a distance of $2.6^{+0.6}_{-0.4}$ kpc. To leverage the combined statistics of all stars in the direction of Wd1, we derive the Bayesian model for a cluster of stars hidden among Galactic field stars; this model includes the parallax zero-point. Previous estimates for the distance to Wd1 ranged from 1.0 to 5.5 kpc, although values around 5 kpc have usually been adopted. The {it Gaia} DR2 parallaxes reduce the uncertainty from a factor of 3 to 18% and rules out the most often quoted value of 5 kpc with 99% confidence. This new distance allows for more accurate mass and age determinations for the stars in Wd1. For example, the previously inferred initial mass at the main-sequence turn-off was around 40 M$_{odot}$; the new {it Gaia} DR2 distance shifts this down to about 22 M$_{odot}$. This has important implications for our understanding of the late stages of stellar evolution, including the initial mass of the magnetar and the LBV in Wd1. Similarly, the new distance suggests that the total cluster mass is about four times lower than previously calculated.
We use 156 044 white dwarf candidates with $geq5sigma$ significant parallax measurements from the Gaia mission to measure the velocity dispersion of the Galactic disc; $(sigma_U,sigma_V,sigma_W) = (30.8, 23.9, 20.0)$ km s$^{-1}$. We identify 142 obje cts that are inconsistent with disc membership at the $>5sigma$ level. This is the largest sample of field halo white dwarfs identified to date. We perform a detailed model atmosphere analysis using optical and near-infrared photometry and parallaxes to constrain the mass and cooling age of each white dwarf. The white dwarf cooling ages of our targets range from 7 Myr for J1657+2056 to 10.3 Gyr for J1049-7400. The latter provides a firm lower limit of 10.3 Gyr for the age of the inner halo based on the well-understood physics of white dwarfs. Including the pre-white dwarf evolutionary lifetimes, and limiting our sample to the recently formed white dwarfs with cooling ages of $<500$ Myr, we estimate an age of $10.9 pm 0.4$ Gyr (internal errors only) for the Galactic inner halo. The coolest white dwarfs in our sample also give similar results. For example, J1049-7400 has a total age of 10.9-11.1 Gyr. Our age measurements are consistent with other measurements of the age of the inner halo, including the white dwarf based measurements of the globular clusters M4, NGC 6397, and 47 Tuc.
Context. Open clusters are very good tracers of the evolution of the Galactic disc. Thanks to Gaia, their kinematics can be investigated with an unprecedented precision and accuracy. Aims. The distribution of open clusters in the 6D phase space is re visited with Gaia DR2. Methods. The weighted mean radial velocity of open clusters was determined, using the most probable members available from a previous astrometric investigation that also provided mean parallaxes and proper motions. Those parameters, all derived from Gaia DR2 only, were combined to provide the 6D phase space information of 861 clusters. The velocity distribution of nearby clusters was investigated, as well as the spatial and velocity distributions of the whole sample as a function of age. A high quality subsample was used to investigate some possible pairs and groups of clusters sharing the same Galactic position and velocity. Results. For the high quality sample that has 406 clusters, the median uncertainty of the weighted mean radial velocity is 0.5 km/s. The accuracy, assessed by comparison to ground-based high resolution spectroscopy, is better than 1 km/s. Open clusters nicely follow the velocity distribution of field stars in the close Solar neighbourhood previously revealed by Gaia DR2. As expected, the vertical distribution of young clusters is very flat but the novelty is the high precision to which this can be seen. The dispersion of vertical velocities of young clusters is at the level of 5 km/s. Clusters older than 1 Gyr span distances to the Galactic plane up to 1 kpc with a vertical velocity dispersion of 14 km/s, typical of the thin disc. Five pairs of clusters and one group with five members are possibly physically related. Other binary candidates previously identified turn out to be chance alignment.
We analyzed the velocity space of the thin and thick-disk Gaia white dwarf population within 100 pc looking for signatures of the Hercules stellar stream. We aimed to identify those objects belonging to the Hercules stream and, by taking advantage of white dwarf stars as reliable cosmochronometers, to derive a first age distribution. We applied a kernel density estimation to the $UV$ velocity space of white dwarfs. For the region where a clear overdensity of stars was found, we created a 5-D space of dynamic variables. We applied a hierarchichal clustering method, HDBSCAN, to this 5-D space, identifying those white dwarfs that share similar kinematic characteristics. Finally, under general assumptions and from their photometric properties, we derived an age estimate for each object. The Hercules stream was firstly revealed as an overdensity in the $UV$ velocity space of the thick-disk white dwarf population. Three substreams were then found: Hercules $a$ and Hercules $b$, formed by thick-disk stars with an age distribution peaked $4,$Gyr in the past and extended to very old ages; and Hercules $c$, with a ratio of 65:35 thin:thick stars and a more uniform age distribution younger than 10 Gyr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا