ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaia DR2 white dwarfs in the Hercules stream

84   0   0.0 ( 0 )
 نشر من قبل Santiago Torres
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyzed the velocity space of the thin and thick-disk Gaia white dwarf population within 100 pc looking for signatures of the Hercules stellar stream. We aimed to identify those objects belonging to the Hercules stream and, by taking advantage of white dwarf stars as reliable cosmochronometers, to derive a first age distribution. We applied a kernel density estimation to the $UV$ velocity space of white dwarfs. For the region where a clear overdensity of stars was found, we created a 5-D space of dynamic variables. We applied a hierarchichal clustering method, HDBSCAN, to this 5-D space, identifying those white dwarfs that share similar kinematic characteristics. Finally, under general assumptions and from their photometric properties, we derived an age estimate for each object. The Hercules stream was firstly revealed as an overdensity in the $UV$ velocity space of the thick-disk white dwarf population. Three substreams were then found: Hercules $a$ and Hercules $b$, formed by thick-disk stars with an age distribution peaked $4,$Gyr in the past and extended to very old ages; and Hercules $c$, with a ratio of 65:35 thin:thick stars and a more uniform age distribution younger than 10 Gyr.

قيم البحث

اقرأ أيضاً

We analyse the 100pc Gaia white dwarf volume-limited sample by means of VOSA (Virtual Observatory SED Analyser) with the aim of identifying candidates for displaying infrared excesses. Our search focuses on the study of the spectral energy distributi on (SED) of 3,733 white dwarfs with reliable infrared photometry and GBP-GRP colours below 0.8 mag, a sample which seems to be nearly representative of the overall white dwarf population. Our search results in 77 selected candidates, 52 of which are new identifications. For each target we apply a two-component SED fitting implemented in VOSA to derive the effective temperatures of both the white dwarf and the object causing the excess. We calculate a fraction of infrared-excess white dwarfs due to the presence of a circumstellar disk of 1.6+-0.2%, a value which increases to 2.6+-0.3% if we take into account incompleteness issues. Our results are in agreement with the drop in the percentage of infrared excess detections for cool (<8,000K) and hot (>20,000K) white dwarfs obtained in previous analyses. The fraction of white dwarfs with brown dwarf companions we derive is ~0.1-0.2%.
We use 156 044 white dwarf candidates with $geq5sigma$ significant parallax measurements from the Gaia mission to measure the velocity dispersion of the Galactic disc; $(sigma_U,sigma_V,sigma_W) = (30.8, 23.9, 20.0)$ km s$^{-1}$. We identify 142 obje cts that are inconsistent with disc membership at the $>5sigma$ level. This is the largest sample of field halo white dwarfs identified to date. We perform a detailed model atmosphere analysis using optical and near-infrared photometry and parallaxes to constrain the mass and cooling age of each white dwarf. The white dwarf cooling ages of our targets range from 7 Myr for J1657+2056 to 10.3 Gyr for J1049-7400. The latter provides a firm lower limit of 10.3 Gyr for the age of the inner halo based on the well-understood physics of white dwarfs. Including the pre-white dwarf evolutionary lifetimes, and limiting our sample to the recently formed white dwarfs with cooling ages of $<500$ Myr, we estimate an age of $10.9 pm 0.4$ Gyr (internal errors only) for the Galactic inner halo. The coolest white dwarfs in our sample also give similar results. For example, J1049-7400 has a total age of 10.9-11.1 Gyr. Our age measurements are consistent with other measurements of the age of the inner halo, including the white dwarf based measurements of the globular clusters M4, NGC 6397, and 47 Tuc.
153 - G. Monari , B. Famaey , A. Siebert 2019
The second data release of the Gaia mission has revealed, in stellar velocity and action space, multiple ridges, the exact origin of which is still debated. Recently, we demonstrated that a large Galactic bar with pattern speed 39 km/s/kpc does creat e most of the observed ridges. Among those ridges, the Hercules moving group would then be associated to orbits trapped at the co-rotation resonance of the bar. Here we show that a distinctive prediction of such a model is that the angular momentum of Hercules at the Suns radius must significantly decrease with increasing Galactocentric azimuth, i.e. when getting closer to the major axis of the bar. We show that such a dependence of the angular momentum of trapped orbits on the azimuth would on the other hand not happen close to the outer Lindblad resonance of a faster bar, unless the orbital distribution is still far from phase-mixed, namely for a bar perturbation younger than ~ 2 Gyr. Using Gaia DR2 and Bayesian distances from the StarHorse code, and tracing the average Galactocentric radial velocity as a function of angular momentum and azimuth, we show that the Hercules angular momentum changes significantly with azimuth as expected for the co-rotation resonance of a dynamically old large bar.
Context. Open clusters are very good tracers of the evolution of the Galactic disc. Thanks to Gaia, their kinematics can be investigated with an unprecedented precision and accuracy. Aims. The distribution of open clusters in the 6D phase space is re visited with Gaia DR2. Methods. The weighted mean radial velocity of open clusters was determined, using the most probable members available from a previous astrometric investigation that also provided mean parallaxes and proper motions. Those parameters, all derived from Gaia DR2 only, were combined to provide the 6D phase space information of 861 clusters. The velocity distribution of nearby clusters was investigated, as well as the spatial and velocity distributions of the whole sample as a function of age. A high quality subsample was used to investigate some possible pairs and groups of clusters sharing the same Galactic position and velocity. Results. For the high quality sample that has 406 clusters, the median uncertainty of the weighted mean radial velocity is 0.5 km/s. The accuracy, assessed by comparison to ground-based high resolution spectroscopy, is better than 1 km/s. Open clusters nicely follow the velocity distribution of field stars in the close Solar neighbourhood previously revealed by Gaia DR2. As expected, the vertical distribution of young clusters is very flat but the novelty is the high precision to which this can be seen. The dispersion of vertical velocities of young clusters is at the level of 5 km/s. Clusters older than 1 Gyr span distances to the Galactic plane up to 1 kpc with a vertical velocity dispersion of 14 km/s, typical of the thin disc. Five pairs of clusters and one group with five members are possibly physically related. Other binary candidates previously identified turn out to be chance alignment.
Classical Cepheids in open clusters are key ingredients for stellar population studies and the characterization of variable stars, as they are tracers of young and massive populations and of recent star formation episodes. Cluster Cepheids are of par ticular importance since they can be age dated by using the clusters stellar population to obtain the Cepheid period-luminosity-age relation. In this contribution, we present the preliminary results of an all-sky search for classical Cepheids in Galactic open clusters by taking advantage of the unprecedented astrometric precision of the second data release of the Gaia satellite. To do this, we determined membership probabilities by performing a Bayesian analysis based on the spatial distribution of Cepheids and clusters, and their kinematics. Here we describe our adopted methodology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا