ترغب بنشر مسار تعليمي؟ اضغط هنا

A Self-Attentive Emotion Recognition Network

192   0   0.0 ( 0 )
 نشر من قبل Kostantinos Papadamou Mr
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern deep learning approaches have achieved groundbreaking performance in modeling and classifying sequential data. Specifically, attention networks constitute the state-of-the-art paradigm for capturing long temporal dynamics. This paper examines the efficacy of this paradigm in the challenging task of emotion recognition in dyadic conversations. In contrast to existing approaches, our work introduces a novel attention mechanism capable of inferring the immensity of the effect of each past utterance on the current speaker emotional state. The proposed attention mechanism performs this inference procedure without the need of a decoder network; this is achieved by means of innovative self-attention arguments. Our self-attention networks capture the correlation patterns among consecutive encoder network states, thus allowing to robustly and effectively model temporal dynamics over arbitrary long temporal horizons. Thus, we enable capturing strong affective patterns over the course of long discussions. We exhibit the effectiveness of our approach considering the challenging IEMOCAP benchmark. As we show, our devised methodology outperforms state-of-the-art alternatives and commonly used approaches, giving rise to promising new research directions in the context of Online Social Network (OSN) analysis tasks.



قيم البحث

اقرأ أيضاً

Emotion recognition is a challenging task due to limited availability of in-the-wild labeled datasets. Self-supervised learning has shown improvements on tasks with limited labeled datasets in domains like speech and natural language. Models such as BERT learn to incorporate context in word embeddings, which translates to improved performance in downstream tasks like question answering. In this work, we extend self-supervised training to multi-modal applications. We learn multi-modal representations using a transformer trained on the masked language modeling task with audio, visual and text features. This model is fine-tuned on the downstream task of emotion recognition. Our results on the CMU-MOSEI dataset show that this pre-training technique can improve the emotion recognition performance by up to 3% compared to the baseline.
260 - Yekun Chai , Shuo Jin , Xinwen Hou 2020
Self-attention mechanisms have made striking state-of-the-art (SOTA) progress in various sequence learning tasks, standing on the multi-headed dot product attention by attending to all the global contexts at different locations. Through a pseudo info rmation highway, we introduce a gated component self-dependency units (SDU) that incorporates LSTM-styled gating units to replenish internal semantic importance within the multi-dimensional latent space of individual representations. The subsidiary content-based SDU gates allow for the information flow of modulated latent embeddings through skipped connections, leading to a clear margin of convergence speed with gradient descent algorithms. We may unveil the role of gating mechanism to aid in the context-based Transformer modules, with hypothesizing that SDU gates, especially on shallow layers, could push it faster to step towards suboptimal points during the optimization process.
The modeling of conversational context plays a vital role in emotion recognition from conversation (ERC). In this paper, we put forward a novel idea of encoding the utterances with a directed acyclic graph (DAG) to better model the intrinsic structur e within a conversation, and design a directed acyclic neural network, namely DAG-ERC, to implement this idea. In an attempt to combine the strengths of conventional graph-based neural models and recurrence-based neural models, DAG-ERC provides a more intuitive way to model the information flow between long-distance conversation background and nearby context. Extensive experiments are conducted on four ERC benchmarks with state-of-the-art models employed as baselines for comparison. The empirical results demonstrate the superiority of this new model and confirm the motivation of the directed acyclic graph architecture for ERC.
This paper introduces scattering transform for speech emotion recognition (SER). Scattering transform generates feature representations which remain stable to deformations and shifting in time and frequency without much loss of information. In speech , the emotion cues are spread across time and localised in frequency. The time and frequency invariance characteristic of scattering coefficients provides a representation robust against emotion irrelevant variations e.g., different speakers, language, gender etc. while preserving the variations caused by emotion cues. Hence, such a representation captures the emotion information more efficiently from speech. We perform experiments to compare scattering coefficients with standard mel-frequency cepstral coefficients (MFCCs) over different databases. It is observed that frequency scattering performs better than time-domain scattering and MFCCs. We also investigate layer-wise scattering coefficients to analyse the importance of time shift and deformation stable scalogram and modulation spectrum coefficients for SER. We observe that layer-wise coefficients taken independently also perform better than MFCCs.
Recently, deep learning has made significant progress in the task of sequential recommendation. Existing neural sequential recommenders typically adopt a generative way trained with Maximum Likelihood Estimation (MLE). When context information (calle d factor) is involved, it is difficult to analyze when and how each individual factor would affect the final recommendation performance. For this purpose, we take a new perspective and introduce adversarial learning to sequential recommendation. In this paper, we present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation. Specifically, our proposed MFGAN has two kinds of modules: a Transformer-based generator taking user behavior sequences as input to recommend the possible next items, and multiple factor-specific discriminators to evaluate the generated sub-sequence from the perspectives of different factors. To learn the parameters, we adopt the classic policy gradient method, and utilize the reward signal of discriminators for guiding the learning of the generator. Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time. Extensive experiments conducted on three real-world datasets demonstrate the superiority of our proposed model over the state-of-the-art methods, in terms of effectiveness and interpretability.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا