ﻻ يوجد ملخص باللغة العربية
We extend a recent work on weak field first order light deflection in the MOdified Gravity (MOG) by comprehensively analyzing the actual observables in gravitational lensing both in the weak and strong field regime. The static spherically symmetric black hole (BH) obtained by Moffat is what we call here the Schwarzschild-MOG (abbreviated as SMOG) containing repulsive Yukawa-like force characterized by the MOG parameter $alpha>0$ diminishing gravitational attraction. We point out a remarkable feature of SMOG, viz., it resembles a regular textit{brane-world} BH in the range $-1<alpha <0$ giving rise to a negative tidal charge $Q$ ($=frac{1}{4}frac{alpha }{1+alpha}$) interpreted as an imprint from the $5D$ bulk with an imaginary source charge $q$ in the brane. The Yukawa-like force of MOG is attractive in the brane-world range enhancing gravitational attraction. For $-infty <alpha <-1$, the SMOG represents a naked singularity. Specifically, we shall investigate the effect of $alpha $ or Yukawa-type forces on the weak (up to third PPN order) and strong field lensing observables. For illustration, we consider the supermassive BH SgrA* with $alpha =0.055$ for the weak field to quantify the deviation of observables from GR but in general we leave $alpha$ unrestricted both in sign and magnitude so that future accurate lensing measurements, which are quite challenging, may constrain $alpha$.
We study the black holes shadow for Schwarzschild - de Sitter and Kerr - de Sitter metrics with the contribution of the cosmological constant Lambda. Based on the reported parameters of the M87* black hole shadow we obtain constraints for the $Lambda
We investigate the strong gravitational lensing for black hole with scalar charge in massive gravity. We find that the scalar charge and the type of the black hole significantly affect the radius of the photon sphere, deflection angle, angular image
Quasinormal modes of perturbed black holes have recently gained much interest because of their tight relations with the gravitational wave signals emitted during the post-merger phase of a binary black hole coalescence. One of the intriguing features
A modified Hayward black hole is a nonsingular black hole. It is proposed to form when the pressure generated by quantum gravity can stop matters collapse as the matter reaches Planck density. Strong deflection gravitational lensing happening nearby
A covariant modified gravity (MOG) is formulated by adding to general relativity two new degrees of freedom, a scalar field gravitational coupling strength $G= 1/chi$ and a gravitational spin 1 vector field $phi_mu$. The $G$ is written as $G=G_N(1+al