ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong gravitational lensing for black hole with scalar charge in massive gravity

65   0   0.0 ( 0 )
 نشر من قبل Jiliang Jing
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the strong gravitational lensing for black hole with scalar charge in massive gravity. We find that the scalar charge and the type of the black hole significantly affect the radius of the photon sphere, deflection angle, angular image position, angular image separation, relative magnifications and time delay in strong gravitational lensing. Our results can be reduced to that of the Schwarzschild and Reissner-Nordstr$ddot{o}$m black holes in some special cases.



قيم البحث

اقرأ أيضاً

We investigate the strong gravitational lensing in a Kaluza-Klein black hole with squashed horizons. We find the size of the extra dimension imprints in the radius of the photon sphere, the deflection angle, the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the Galaxy can be described by this metric, we estimated the numerical values of the coefficients and observables for gravitational lensing in the strong field limit.
We extend a recent work on weak field first order light deflection in the MOdified Gravity (MOG) by comprehensively analyzing the actual observables in gravitational lensing both in the weak and strong field regime. The static spherically symmetric b lack hole (BH) obtained by Moffat is what we call here the Schwarzschild-MOG (abbreviated as SMOG) containing repulsive Yukawa-like force characterized by the MOG parameter $alpha>0$ diminishing gravitational attraction. We point out a remarkable feature of SMOG, viz., it resembles a regular textit{brane-world} BH in the range $-1<alpha <0$ giving rise to a negative tidal charge $Q$ ($=frac{1}{4}frac{alpha }{1+alpha}$) interpreted as an imprint from the $5D$ bulk with an imaginary source charge $q$ in the brane. The Yukawa-like force of MOG is attractive in the brane-world range enhancing gravitational attraction. For $-infty <alpha <-1$, the SMOG represents a naked singularity. Specifically, we shall investigate the effect of $alpha $ or Yukawa-type forces on the weak (up to third PPN order) and strong field lensing observables. For illustration, we consider the supermassive BH SgrA* with $alpha =0.055$ for the weak field to quantify the deviation of observables from GR but in general we leave $alpha$ unrestricted both in sign and magnitude so that future accurate lensing measurements, which are quite challenging, may constrain $alpha$.
532 - V. Bozza , G. Scarpetta 2007
The gravitational field of supermassive black holes is able to strongly bend light rays emitted by nearby sources. When the deflection angle exceeds $pi$, gravitational lensing can be analytically approximated by the so-called strong deflection limit . In this paper we remove the conventional assumption of sources very far from the black hole, considering the distance of the source as an additional parameter in the lensing problem to be treated exactly. We find expressions for critical curves, caustics and all lensing observables valid for any position of the source up to the horizon. After analyzing the spherically symmetric case we focus on the Kerr black hole, for which we present an analytical 3-dimensional description of the higher order caustic tubes.
Gravitational lensing is one of the most impressive celestial phenomena, which has interesting behaviors in its strong field limit. Near such limit, Bozza finds that the deflection angle of light is well-approximated by a logarithmic term and a const ant term. In this way he explicitly derived the analytic expressions of deflection angles for a few types of black holes. In this paper, we study the explicit calculation to two new types of metrics in the strong field limit: (i) the Schwarzschild metric extended with an additional $r^{-n}(ngeq 3)$ term in the metric function; (ii) the Reissner-Nordstrom metric extended with an additional $r^{-6}$ term in the metric function. With such types of metrics, Bozzas original way of choosing integration variables may lead to technical difficulties in explicitly expressing the deflection angles, and we use a slightly modified version of Bozzas method to circumvent the problem.
The entanglement of the coupled massive scalar field in the spacetime of a Garfinkle-Horowitz-Strominger(GHS) dilaton black hole has been investigated. It is found that the entanglement does not depend on the mass of the particle and the coupling bet ween the scalar field and the gravitational field, but it decreases as the dilaton parameter $D$ increases. It is interesting to note that in the limit of $Dto M$, corresponding to the case of an extreme black hole, the state has no longer distillable entanglement for any state parameter $alpha$, but the mutual information equals to a nonvanishing minimum value, which indicates that the total correlations consist of classical correlations plus bound entanglement in this limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا