ترغب بنشر مسار تعليمي؟ اضغط هنا

Outgassing As Trigger of 1I/`Oumuamuas Nongravitational Acceleration: Could This Hypothesis Work at All?

73   0   0.0 ( 0 )
 نشر من قبل Zdenek Sekanina
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Zdenek Sekanina




اسأل ChatGPT حول البحث

The question of what triggered the nongravitational acceleration of 1I/`Oumuamua continues to attract researchers attention. The absence of any signs of activity notwithstanding, the prevailing notion is that the acceleration of the stellar, cigar-like object was prompted by outgassing. However, the Spitzer Space Telescopes failure to detect `Oumuamua not only ruled out the CO_2 and/or CO driven activity (Trilling et al. 2018), but made the cigar shape incompatible with the optical observations. Choice of water ice as the source of outgassing is shown to be flawed as well: (i) the water sublimation law is demonstrably inconsistent with the observed variations in the nongravitational acceleration derived by Micheli et al. (2018), the point that should have been assertively highlighted; and (ii) an upper limit of the production rate of water is estimated at as low as 4 x 10^(23) molecules s^(-1), requiring that, at most, only a small area of the surface be active. In this case the conservation of momentum law is satisfied only when `Oumuamuas bulk density is extremely low, <0.001 g cm^(-3), reminiscent of the formerly proposed scenario with `Oumuamua as a fragment of a dwarf interstellar comet, possibly an embryo planetesimal, disintegrating near perihelion, with the acceleration driven by solar radiation pressure (Sekanina 2019a) and no need for activity at all. High quality of astrometry and Micheli et al.s orbital analysis, whose results were confirmed by the computations of other authors, is acknowledged.



قيم البحث

اقرأ أيضاً

Stars of spectral types O and B produce neutron stars (NSs) after supernova explosions. Most of NSs are strongly magnetised including normal radio pulsars with $B propto 10^{12}$ G and magnetars with $Bpropto 10^{14}$ G. A fraction of 7-12 per cent o f massive stars are also magnetised with $Bpropto 10^3$ G and some are weakly magnetised with $Bpropto 1$ G. It was suggested that magnetic fields of NSs could be the fossil remnants of magnetic fields of their progenitors. This work is dedicated to study this hypothesis. First, we gather all modern precise measurements of surface magnetic fields in O, B and A stars. Second, we estimate parameters for log-normal distribution of magnetic fields in B stars and found $mu_B = 2.83pm 0.1$ $log_{10}$ (G), $sigma_B=0.65pm 0.09$ for strongly magnetised and $mu_B = 0.14pm 0.5$ $log_{10}$ (G), $sigma=0.7_{-0.27}^{+0.57}$ for weakly magnetised. Third, we assume that the magnetic field of pulsars and magnetars have $2.7$ DEX difference in magnetic fields and magnetars represent 10 per cent of all young NSs and run population synthesis. We found that it is impossible to simultaneously reproduce pulsars and magnetars populations if the difference in their magnetic fields is 2.7 DEX. Therefore, we conclude that the simple fossil origin of the magnetic field is not viable for NSs.
111 - Zdenek Sekanina 2019
Intrinsically faint comets in nearly-parabolic orbits with perihelion distances much smaller than 1 AU exhibit strong propensity for suddenly disintegrating at a time not long before perihelion, as shown by Bortle (1991). Evidence from available obse rvations of such comets suggests that the disintegration event usually begins with an outburst and that the debris is typically a massive cloud of dust grains that survives over a limited period of time. Recent CCD observations revealed, however, that also surviving could be a sizable fragment, resembling a devolatilized aggregate of loosely-bound dust grains that may have exotic shape, peculiar rotational properties, and extremely high porosity, all acquired in the course of the disintegration event. Given that the brightness of 1I/`Oumuamuas parent could not possibly equal or exceed the Bortle survival limit, there are reasons to believe that it suffered the same fate as do the frail comets. The post-perihelion observations then do not refer to the object that was entering the inner Solar System in early 2017, as is tacitly assumed, but to its debris. Comparison with C/2017 S3 and C/2010 X1 suggests that, as a monstrous fluffy dust aggregate released in the recent explosive event, `Oumuamua should be of strongly irregular shape, tumbling, not outgassing, and subjected to effects of solar radiation pressure, consistent with observation. The unknown timing of the disintegration event may compromise studies of the parents home stellar system. Limited search for possible images of the object to constrain the time of the (probably minor) outburst is recommended.
We present observations of three FU Orionis objects (hereafter, FUors) with nonredundant aperture-mask interferometry (NRM) at 1.59 um and 2.12 um that probe for binary companions on the scale of the protoplanetary disk that feeds their accretion out bursts. We do not identify any companions to V1515 Cyg or HBC 722, but we do resolve a close binary companion to V1057 Cyg that is at the diffraction limit (rho = 58.3 +/- 1.4 mas or 30 +/- 5 AU) and currently much fainter than the outbursting star (delta(K) = 3.34 +/- 0.10 mag). Given the flux excess of the outbursting star, we estimate that the mass of the companion (M ~ 0.25 Msun) is similar to or slightly below that of the FUor itself, and therefore it resembles a typical T Tauri binary system. Our observations only achieve contrast limits of delta(K) ~ 4 mag, and hence we are only sensitive to companions that were near or above the pre-outburst luminosity of the FUors. It remains plausible that FUor outbursts could be tied to the presence of a close binary companion. However, we argue from the system geometry and mass reservoir considerations that these outbursts are not directly tied to the orbital period (i.e., occurring at periastron passage), but instead must only occur infrequently.
57 - DE Trilling , M Mommert , JL Hora 2018
1I/`Oumuamua is the first confirmed interstellar body in our Solar System. Here we report on observations of `Oumuamua made with the Spitzer Space Telescope on 2017 November 21--22 (UT). We integrated for 30.2~hours at 4.5 micron (IRAC channel 2). We did not detect the object and place an upper limit on the flux of 0.3 uJy (3sigma). This implies an effective spherical diameter less than [98, 140, 440] meters and albedo greater than [0.2, 0.1, 0.01] under the assumption of low, middle, or high thermal beaming parameter eta, respectively. With an aspect ratio for `Oumuamua of 6:1, these results correspond to dimensions of [240:40, 341:57, 1080:180] meters, respectively. We place upper limits on the amount of dust, CO, and CO2 coming from this object that are lower than previous results; we are unable to constrain the production of other gas species. Both our size and outgassing limits are important because `Oumuamuas trajectory shows non-gravitational accelerations that are sensitive to size and mass and presumably caused by gas emission. We suggest that `Oumuamua may have experienced low-level post-perihelion volatile emission that produced a fresh, bright, icy mantle. This model is consistent with the expected eta value and implied high albedo value for this solution, but, given our strict limits on CO and CO2, requires another gas species --- probably H2O --- to explain the observed non-gravitational acceleration. Our results extend the mystery of `Oumuamuas origin and evolution.
The discovery of 1I/2017 U1 (Oumuamua) has provided the first glimpse of a planetesimal born in another planetary system. This interloper exhibits a variable colour within a range that is broadly consistent with local small bodies such as the P/D typ e asteroids, Jupiter Trojans, and dynamically excited Kuiper Belt Objects. 1I/Oumuamua appears unusually elongated in shape, with an axial ratio exceeding 5:1. Rotation period estimates are inconsistent and varied, with reported values between 6.9 and 8.3 hours. Here we analyse all available optical photometry reported to date. No single rotation period can explain the exhibited brightness variations. Rather, 1I/Oumuamua appears to be in an excited rotational state undergoing Non-Principal Axis (NPA) rotation, or tumbling. A satisfactory solution has apparent lightcurve frequencies of 0.135 and 0.126 hr-1 and implies a longest-to-shortest axis ratio of 5:1, though the available data are insufficient to uniquely constrain the true frequencies and shape. Assuming a body that responds to NPA rotation in a similar manner to Solar System asteroids and comets, the timescale to damp 1I/Oumuamuas tumbling is at least a billion years. 1I/Oumuamua was likely set tumbling within its parent planetary system, and will remain tumbling well after it has left ours.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا