ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing the Binary Trigger Hypothesis in FUors

104   0   0.0 ( 0 )
 نشر من قبل Joel Green
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observations of three FU Orionis objects (hereafter, FUors) with nonredundant aperture-mask interferometry (NRM) at 1.59 um and 2.12 um that probe for binary companions on the scale of the protoplanetary disk that feeds their accretion outbursts. We do not identify any companions to V1515 Cyg or HBC 722, but we do resolve a close binary companion to V1057 Cyg that is at the diffraction limit (rho = 58.3 +/- 1.4 mas or 30 +/- 5 AU) and currently much fainter than the outbursting star (delta(K) = 3.34 +/- 0.10 mag). Given the flux excess of the outbursting star, we estimate that the mass of the companion (M ~ 0.25 Msun) is similar to or slightly below that of the FUor itself, and therefore it resembles a typical T Tauri binary system. Our observations only achieve contrast limits of delta(K) ~ 4 mag, and hence we are only sensitive to companions that were near or above the pre-outburst luminosity of the FUors. It remains plausible that FUor outbursts could be tied to the presence of a close binary companion. However, we argue from the system geometry and mass reservoir considerations that these outbursts are not directly tied to the orbital period (i.e., occurring at periastron passage), but instead must only occur infrequently.



قيم البحث

اقرأ أيضاً

There is no quantitative theory to explain why a high 80% of all planetary nebulae are non-spherical. The Binary Hypothesis states that a companion to the progenitor of a central star of planetary nebula is required to shape the nebula and even for a planetary nebula to be formed at all. A way to test this hypothesis is to estimate the binary fraction of central stars of planetary nebulae and to compare it with that of the main sequence population. Preliminary results from photometric variability and the infrared excess techniques indicate that the binary fraction of central stars of planetary nebulae is higher than that of the main sequence, implying that PNe could preferentially form via a binary channel. This article briefly reviews these results and current studies aiming to refine the binary fraction.
330 - Eli Haim , Yuval Kochman 2017
We consider the problem of distributed binary hypothesis testing of two sequences that are generated by an i.i.d. doubly-binary symmetric source. Each sequence is observed by a different terminal. The two hypotheses correspond to different levels of correlation between the two source components, i.e., the crossover probability between the two. The terminals communicate with a decision function via rate-limited noiseless links. We analyze the tradeoff between the exponential decay of the two error probabilities associated with the hypothesis test and the communication rates. We first consider the side-information setting where one encoder is allowed to send the full sequence. For this setting, previous work exploits the fact that a decoding error of the source does not necessarily lead to an erroneous decision upon the hypothesis. We provide improved achievability results by carrying out a tighter analysis of the effect of binning error; the results are also more complete as they cover the full exponent tradeoff and all possible correlations. We then turn to the setting of symmetric rates for which we utilize Korner-Marton coding to generalize the results, with little degradation with respect to the performance with a one-sided constraint (side-information setting).
The classical binary hypothesis testing problem is revisited. We notice that when one of the hypotheses is composite, there is an inherent difficulty in defining an optimality criterion that is both informative and well-justified. For testing in the simple normal location problem (that is, testing for the mean of multivariate Gaussians), we overcome the difficulty as follows. In this problem there exists a natural hardness order between parameters as for different parameters the error-probailities curves (when the parameter is known) are either identical, or one dominates the other. We can thus define minimax performance as the worst-case among parameters which are below some hardness level. Fortunately, there exists a universal minimax test, in the sense that it is minimax for all hardness levels simultaneously. Under this criterion we also find the optimal test for composite hypothesis testing with training data. This criterion extends to the wide class of local asymptotic normal models, in an asymptotic sense where the approximation of the error probabilities is additive. Since we have the asymptotically optimal tests for composite hypothesis testing with and without training data, we quantify the loss of universality and gain of training data for these models.
97 - A. Sesana , Z. Haiman , B. Kocsis 2017
The advent of time domain astronomy is revolutionizing our understanding of the Universe. Programs such as the Catalina Real-time Transient Survey (CRTS) or the Palomar Transient Factory (PTF) surveyed millions of objects for several years, allowing variability studies on large statistical samples. The inspection of $approx$250k quasars in CRTS resulted in a catalogue of 111 potentially periodic sources, put forward as supermassive black hole binary (SMBHB) candidates. A similar investigation on PTF data yielded 33 candidates from a sample of $approx$35k quasars. Working under the SMBHB hypothesis, we compute the implied SMBHB merger rate and we use it to construct the expected gravitational wave background (GWB) at nano-Hz frequencies, probed by pulsar timing arrays (PTAs). After correcting for incompleteness and assuming virial mass estimates, we find that the GWB implied by the CRTS sample exceeds the current most stringent PTA upper limits by almost an order of magnitude. After further correcting for the implicit bias in virial mass measurements, the implied GWB drops significantly but is still in tension with the most stringent PTA upper limits. Similar results hold for the PTF sample. Bayesian model selection shows that the null hypothesis (whereby the candidates are false positives) is preferred over the binary hypothesis at about $2.3sigma$ and $3.6sigma$ for the CRTS and PTF samples respectively. Although not decisive, our analysis highlights the potential of PTAs as astrophysical probes of individual SMBHB candidates and indicates that the CRTS and PTF samples are likely contaminated by several false positives.
We study the problem of mismatched binary hypothesis testing between i.i.d. distributions. We analyze the tradeoff between the pairwise error probability exponents when the actual distributions generating the observation are different from the distri butions used in the likelihood ratio test, sequential probability ratio test, and Hoeffdings generalized likelihood ratio test in the composite setting. When the real distributions are within a small divergence ball of the test distributions, we find the deviation of the worst-case error exponent of each test with respect to the matched error exponent. In addition, we consider the case where an adversary tampers with the observation, again within a divergence ball of the observation type. We show that the tests are more sensitive to distribution mismatch than to adversarial observation tampering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا