ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a speed-up approach for subclass discriminant analysis and formulate a novel efficient multi-view solution to it. The speed-up approach is developed based on graph embedding and spectral regression approaches that involve eigendecomposition of the corresponding Laplacian matrix and regression to its eigenvectors. We show that by exploiting the structure of the between-class Laplacian matrix, the eigendecomposition step can be substituted with a much faster process. Furthermore, we formulate a novel criterion for multi-view subclass discriminant analysis and show that an efficient solution for it can be obtained in a similar to the single-view manner. We evaluate the proposed methods on nine single-view and nine multi-view datasets and compare them with related existing approaches. Experimental results show that the proposed solutions achieve competitive performance, often outperforming the existing methods. At the same time, they significantly decrease the training time.
This paper proposes an incremental solution to Fast Subclass Discriminant Analysis (fastSDA). We present an exact and an approximate linear solution, along with an approximate kernelized variant. Extensive experiments on eight image datasets with dif
In many artificial intelligence and computer vision systems, the same object can be observed at distinct viewpoints or by diverse sensors, which raises the challenges for recognizing objects from different, even heterogeneous views. Multi-view discri
In this paper, we carry out null space analysis for Class-Specific Discriminant Analysis (CSDA) and formulate a number of solutions based on the analysis. We analyze both theoretically and experimentally the significance of each algorithmic step. The
Multi-view clustering methods have been a focus in recent years because of their superiority in clustering performance. However, typical traditional multi-view clustering algorithms still have shortcomings in some aspects, such as removal of redundan
Multi-typed objects Multi-view Multi-instance Multi-label Learning (M4L) deals with interconnected multi-typed objects (or bags) that are made of diverse instances, represented with heterogeneous feature views and annotated with a set of non-exclusiv