ﻻ يوجد ملخص باللغة العربية
It is important to study the van der Waals interface in emerging vertical heterostructures based on layered two-dimensional (2D) materials. Being atomically thin, 2D materials are susceptible to significant strains as well as charge transfer doping across the interfaces. Here we use Raman and photoluminescence (PL) spectroscopy to study the interface between monolayer graphene/MoS2 heterostructures prepared by mechanical exfoliation and layer-by-layer transfer. By using correlation analysis between the Raman modes of graphene and MoS2 we show that both layers are subjected to compressive strain and charge transfer doping following mechanical exfoliation and thermal annealing. Furthermore, we show that both strain and carrier concentration can be modulated in the heterostructures with additional thermal annealing. Our study highlights the importance of considering both mechanical and electronic coupling when characterizing the interface in van der Waals heterostructures, and demonstrates a method to tune their electromechanical properties.
Van der Waals heterostructures have recently emerged as a new class of materials, where quantum coupling between stacked atomically thin two-dimensional (2D) layers, including graphene, hexagonal-boron nitride, and transition metal dichalcogenides (M
We present a joint theoretical and experimental investigation of charge doping and electronic potential landscapes in hybrid structures composed of graphene and semiconducting single layer MoS2. From first-principles simulations we find electron dopi
We use electron transport to characterize monolayer graphene - multilayer MoS2 heterostructures. Our samples show ambipolar characteristics and conductivity saturation on the electron branch which signals the onset of MoS2 conduction band population.
Two-dimensional (2D) heterointerfaces often provide extraordinary carrier transport as exemplified by superconductivity or excitonic superfluidity. Recently, double-layer graphene separated by few-layered boron nitride demonstrated the Coulomb drag p
Multilayer van der Waals (vdWs) heterostructures assembled by diverse atomically thin layers have demonstrated a wide range of fascinating phenomena and novel applications. Understanding the interlayer coupling and its correlation effect is paramount