ﻻ يوجد ملخص باللغة العربية
Multilayer van der Waals (vdWs) heterostructures assembled by diverse atomically thin layers have demonstrated a wide range of fascinating phenomena and novel applications. Understanding the interlayer coupling and its correlation effect is paramount for designing novel vdWs heterostructures with desirable physical properties. Using a detailed theoretical study of 2D MoS2-graphene (GR)-based heterostructures based on state-of-the-art hybrid density functional theory, we reveal that for 2D few-layer heterostructures, vdWs forces between neighboring layers depend on the number of layers. Compared to that in bilayer, the interlayer coupling in trilayer vdW heterostructures can significantly be enhanced by stacking the third layer, directly supported by short interlayer separations and more interfacial charge transfer. The trilayer shows strong light absorption over a wide range (<700 nm), making it very potential for solar energy harvesting and conversion. Moreover, the Dirac point of GR and band gaps of each layer and trilayer can be readily tuned by external electric field, verifying multilayer vdWs heterostructures with unqiue optoelectronic properties found by experiments. These results suggest that tuning the vdWs interaction, as a new design parameter, would be an effective strategy for devising particular 2D multilayer vdWs heterostructures to meet the demands in various applications.
Van der Waals heterostructures give access to a wide variety of new phenomena that emerge thanks to the combination of properties brought in by the constituent layered materials. We show here that owing to an enhanced interaction cross section with e
Van-der-Waals heterostructures show many intriguing phenomena including ultrafast charge separation following strong excitonic absorption in the visible spectral range. However, despite the enormous potential for future applications in the field of o
Two-dimensional (2D) van der Waals heterostructures serve as a promising platform to exploit various physical phenomena in a diverse range of novel spintronic device applications. The efficient spin injection is the prerequisite for these devices. Th
Graphene constitutes one of the key elements in many functional van der Waals heterostructures. However, it has negligible optical visibility due to its monolayer nature. Here we study the visibility of graphene in various van der Waals heterostructu
Two dimensional materials are usually envisioned as flat, truly 2D layers. However out-of-plane corrugations are inevitably present in these materials. In this manuscript, we show that graphene flakes encapsulated between insulating crystals (hBN, WS