ﻻ يوجد ملخص باللغة العربية
We show that, on convex polytopes and two or three dimensions, the finite element Stokes projection is stable on weighted spaces $mathbf{W}^{1,p}_0(omega,Omega) times L^p(omega,Omega)$, where the weight belongs to a certain Muckenhoupt class and the integrability index can be different from two. We show how this estimate can be applied to obtain error estimates for approximations of the solution to the Stokes problem with singular sources.
We show stability of the $L^2$-projection onto Lagrange finite element spaces with respect to (weighted) $L^p$ and $W^{1,p}$-norms for any polynomial degree and for any space dimension under suitable conditions on the mesh grading. This includes $W^{
The long-standing problem of minimal projections is addressed from a computational point of view. Techniques to determine bounds on the projection constants of univariate polynomial spaces are presented. The upper bound, produced by a linear program,
In this paper we derive stability estimates in $L^{2}$- and $L^{infty}$- based Sobolev spaces for the $L^{2}$ projection and a family of quasiinterolants in the space of smooth, 1-periodic, polynomial splines defined on a uniform mesh in $[0,1]$. As
In two dimensions, we show existence of solutions to the stationary Navier Stokes equations on weighted spaces $mathbf{H}^1_0(omega,Omega) times L^2(omega,Omega)$, where the weight belongs to the Muckenhoupt class $A_2$. We show how this theory can b
In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacl