ﻻ يوجد ملخص باللغة العربية
In two dimensions, we show existence of solutions to the stationary Navier Stokes equations on weighted spaces $mathbf{H}^1_0(omega,Omega) times L^2(omega,Omega)$, where the weight belongs to the Muckenhoupt class $A_2$. We show how this theory can be applied to obtain a priori error estimates for approximations of the solution to the Navier Stokes problem with singular sources.
In Lipschitz two and three dimensional domains, we study the existence for the so--called Boussinesq model of thermally driven convection under singular forcing. By singular we mean that the heat source is allowed to belong to $H^{-1}(varpi,Omega)$,
In two dimensions, we propose and analyze an a posteriori error estimator for finite element approximations of the stationary Navier Stokes equations with singular sources on Lipschitz, but not necessarily convex, polygonal domains. Under a smallness
This work studies the system of $3D$ stationary Navier-Stokes equations. Several Liouville type theorems are established for solutions in mixed-norm Lebesgue spaces and weighted mixed-norm Lebesgue spaces. In particular, we show that, under some suff
Whether the 3D incompressible Navier-Stokes equations can develop a finite time singularity from smooth initial data is one of the most challenging problems in nonlinear PDEs. In this paper, we present some new numerical evidence that the 3D incompre
In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacl