ﻻ يوجد ملخص باللغة العربية
We analyze 88 independent high-resolution cosmological zoom-in simulations of disk galaxies in the NIHAO simulations suite to explore the connection between the atomic gas fraction and angular momentum of baryons throughout cosmic time. The study is motivated by the analytic model of citet{obreschkow16}, which predicts a relation between the atomic gas fraction $f_{rm atm}$ and the global atomic stability parameter $q equiv jsigma / (GM)$, where $M$ and $j$ are the mass and specific angular momentum of the galaxy (stars+cold gas) and $sigma$ is the velocity dispersion of the atomic gas. We show that the simulated galaxies follow this relation from their formation ($zsimeq4$) to present within $sim 0.5$ dex. To explain this behavior, we explore the evolution of the local Toomre stability and find that $90%$--$100%$ of the atomic gas in all simulated galaxies is stable at any time. In other words, throughout the entire epoch of peak star formation until today, the timescale for accretion is longer than the timescale to reach equilibrium, thus resulting in a quasi-static equilibrium of atomic gas at any time. Hence, the evolution of $f_{rm atm}$ depends on the complex hierarchical growth history primarily via the evolution of $q$. An exception are galaxies subject to strong environmental effects.
We study the dust evolution in galaxies by implementing a detailed dust prescription in the SAGE semi-analytical model for galaxy formation. The new model, called Dusty SAGE, follows the condensation of dust in the ejecta of type II supernovae and as
Studies of nearby galaxies including the Milky Way have provided fundamental information on the evolution of structure in the Universe, the existence and nature of dark matter, the origin and evolution of galaxies, and the global features of star for
Current galaxy observations suggest that a roughly linear correlation exists between the [CII] emission and the star formation rate, either as spatially-resolved or integrated quantities. Observationally, this correlation seems to be independent of m
We study the evolution of the cold gas content of galaxies by splitting the interstellar medium into its atomic and molecular hydrogen components, using the galaxy formation model GALFORM in the LCDM framework. We calculate the molecular-to-atomic hy
We present simulations of galaxy formation, based on the GADGET-3 code, in which a sub-resolution model for star formation and stellar feedback is interfaced with a new model for AGN feedback. Our sub-resolution model describes a multiphase ISM, acco