ﻻ يوجد ملخص باللغة العربية
Qubit readout is an indispensable element of any quantum information processor. In this work, we experimentally demonstrate a non-perturbative cross-Kerr coupling between a transmon and a polariton mode which enables an improved quantum non-demolition (QND) readout for superconducting qubits. The new mechanism uses the same experimental techniques as the standard QND qubit readout in the dispersive approximation, but due to its non-perturbative nature, it maximizes the speed, the single-shot fidelity and the QND properties of the readout. In addition, it minimizes the effect of unwanted decay channels such as the Purcell effect. We observed a single-shot readout fidelity of 97.4% for short 50 ns pulses, and we quantified a QND-ness of 99% for long measurement pulses with repeated single-shot readouts.
While relatively easy to engineer, static transverse coupling between a qubit and a cavity mode satisfies the criteria for a quantum non-demolition (QND) measurement only if the coupling between the qubit and cavity is much less than their mutual det
According to idealized models, a strong Kerr non-linearity may be used to build optical quantum gates for optical quantum information processing by inducing conditional phase shifts on quantum states. Recently, Shapiro (PRA 73, 062305 (2006)) argued
With the advent of gravitational wave detectors employing squeezed light, quantum waveform estimation---estimating a time-dependent signal by means of a quantum-mechanical probe---is of increasing importance. As is well known, backaction of quantum m
Quantum error correction is of crucial importance for fault-tolerant quantum computers. As an essential step towards the implementation of quantum error-correcting codes, quantum non-demolition (QND) measurements are needed to efficiently detect the
We discuss a novel approach to the problem of creating a photon number resolving detector using the giant Kerr nonlinearities available in electromagnetically induced transparency. Our scheme can implement a photon number quantum non-demolition measu