ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic moment of rare earth elements in R2Fe14B estimated with {mu}^+SR

99   0   0.0 ( 0 )
 نشر من قبل Jun Sugiyama
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ferromagnetic (FM) nature of Nd2Fe14B has been investigated with muon spin rotation and relaxation ({mu}^+SR) measurements on an aligned, sintered plate-shaped sample. A clear muon spin precession frequency (f_{FM}) corresponding to the static internal FM field at the muon site showed an order parameter-like temperature dependence and disappeared above around 582 K (~T_C). This indicated that the implanted muons are static in the Nd2Fe14B lattice even at temperatures above around 600 K. Using the predicted muon site and local spin densities predicted by DFT calculations, the ordered Nd moment (M_{Nd}) was estimated to be 3.31 {mu}_B at 5 K, when both M_{Fe} and M_{Nd} are parallel to the c-axis and M_{Fe} = 2.1 {mu}_B. Furthermore, M_R in R2Fe14B with R = Y, Ce, Pr, Sm, Gd, Tb, Dy, Ho, Er, and Tm was estimated from f_{mu} values reported in earlier {mu}+SR work, using the FM structure proposed by neutron scattering and the same muon site and local spin density as in Nd2Fe14B. Such estimations yielded M_R values consistent with those obtained by the other methods.



قيم البحث

اقرأ أيضاً

The acute sensitivity of the electrical resistance of certain systems to magnetic fields known as extreme magnetoresistance (XMR) has recently been explored in a new materials context with topological semimetals. Exemplified by WTe$_{2}$ and rare ear th monopnictide La(Sb,Bi), these systems tend to be non-magnetic, nearly compensated semimetals and represent a platform for large magnetoresistance driven by intrinsic electronic structure. Here we explore electronic transport in magnetic members of the latter family of semimetals and find that XMR is strongly modulated by magnetic order. In particular, CeSb exhibits XMR in excess of $1.6 times 10^{6}$ % at fields of 9 T while the magnetoresistance itself is non-monotonic across the various magnetic phases and shows a transition from negative magnetoresistance to XMR with field above magnetic ordering temperature $T_{N}$. The magnitude of the XMR is larger than in other rare earth monopnictides including the non-magnetic members and follows an non-saturating power law to fields above 30 T. We show that the overall response can be understood as the modulation of conductivity by the Ce orbital state and for intermediate temperatures can be characterized by an effective medium model. Comparison to the orbitally quenched compound GdBi supports the correlation of XMR with the onset of magnetic ordering and compensation and highlights the unique combination of orbital inversion and type-I magnetic ordering in CeSb in determining its large response. These findings suggest a paradigm for magneto-orbital control of XMR and are relevant to the understanding of rare earth-based correlated topological materials.
Spin reorientation and magnetisation reversal are two important features of the rare-earth orthorhombic provskites ($RM$O$_{3}$s) that have attracted a lot of attention, though their exact microscopic origin has eluded researchers. Here, using densit y functional theory and classical atomistic spin dynamics we build a general Heisenberg magnetic model that allows to explore the whole phase diagram of the chromite and ferrite compounds and to scrutinize the microscopic mechanism responsible for spin reorientations and magnetisation reversals. We show that the occurrence of a magnetization reversal transition depends on the relative strength and sign of two interactions between rare-earth and transition-metal atoms: superexchange and Dzyaloshinsky-Moriya. We also conclude that the presence of a smooth spin reorientation transition between the so-called $Gamma_4$ and the $Gamma_2$ phases through a coexisting region, and the temperature range in which it occurs, depends on subtle balance of metal--metal (superexchange and Dzyaloshinsky-Moriya) and metal--rare-earth (Dzyaloshinsky-Moriya) couplings. In particular, we show that the intermediate coexistence region occurs because the spin sublattices rotate at different rates.
Based on the electronic band structure obtained from first principles DFT calculations, the opticalspectra of yttrium and neodymium nickelates are computed. We show that the results are in fairagreement with available experimental data. We clarify th e electronic transitions at the origin of thefirst two peaks, highlighting the important role of transitions from t2g states neglected in previousmodels. We discuss the evolution of the optical spectra from small to large rare-earth cations andrelate the changes to the electronic band structure.
226 - L. Weymann , L. Bergen , Th. Kain 2020
Violation of time reversal and spatial inversion symmetries has profound consequences for elementary particles and cosmology. Spontaneous breaking of these symmetries at phase transitions gives rise to unconventional physical phenomena in condensed m atter systems, such as ferroelectricity induced by magnetic spirals, electromagnons, non-reciprocal propagation of light and spin waves, and the linear magnetoelectric (ME) effect - the electric polarization proportional to the applied magnetic field and the magnetization induced by the electric field. Here, we report the experimental study of the holmium-doped langasite, Ho$_{x}$La$_{3-x}$Ga$_5$SiO$_{14}$, showing a puzzling combination of linear and highly non-linear ME responses in the disordered paramagnetic state: its electric polarization grows linearly with the magnetic field but oscillates many times upon rotation of the magnetic field vector. We propose a simple phenomenological Hamiltonian describing this unusual behavior and derive it microscopically using the coupling of magnetic multipoles of the rare-earth ions to the electric field.
Charge density wave (CDW) states in solids bear an intimate connection to underlying fermiology. Modification of the latter by a suitable perturbation provides an attractive handle to unearth novel CDW states. Here, we combine extensive magnetotransp ort experiments and first-principles electronic structure calculations on a non-magnetic tritelluride LaTe$_{3}$ single crystal to uncover phenomena rare in CDW systems: $(i)$ hump-like feature in the temperature dependence of resistivity at low temperature under application of magnetic field, which moves to higher temperature with increasing field strength, $(ii)$ highly anisotropic large transverse magnetoresistance (MR) upon rotation of magnetic field about current parallel to crystallographic c-axis, (iii) anomalously large positive MR with spike-like peaks at characteristic angles when the angle between current and field is varied in the bc-plane, (iv) extreme sensitivity of the angular variation of MR on field and temperature. Moreover, our Hall measurement reveals remarkably high carrier mobility $sim$ 33000 cm$^{2}$/Vs, which is comparable to that observed in some topological semimetals. These novel observations find a comprehensive explication in our density functional theory (DFT) and dynamical mean field theory (DMFT) calculations that capture field-induced electronic structure modification in LaTe$_{3}$. The band structure theory together with transport calculations suggest the possibility of a second field-induced CDW transition from the field-reconstructed Fermi surface, which qualitatively explains the hump in temperature dependence of resistivity at low temperature. Thus, our study exposes the novel manifestations of the interplay between CDW order and field-induced electronic structure modifications in LaTe$_{3}$, and establishes a new route to tune CDW states by perturbations like magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا