ترغب بنشر مسار تعليمي؟ اضغط هنا

Validity of Gross-Pitaevskii solutions of harmonically confined BEC gases in reduced dimensions

192   0   0.0 ( 0 )
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By exact numerical solutions of the Gross-Pitaevskii (GP) equation in 3D, we assess the validity of 1D and 2D approximations in the study of Bose-Einstein condensates confined in harmonic trap potentials. Typically, these approximations are performed when one or more of the harmonic frequencies are much greater than the remaining ones, using arguments based on the adiabatic evolution of the initial approximated state. Deviations from the 3D solution are evaluated as a function of both the effective interaction strength and the ratio between the trap frequencies that define the reduced dimension where the condensate is confined. The observables analyzed are both stationary and dynamical character, namely, the chemical potential, the wave function profiles, and the time evolution of the approximated 1D and 2D stationary states, considered as initial states in the 3D GP equation. Our study, besides setting quantitative limits on approximations previously developed, should be useful in actual experimental studies where quasi-1D and quasi-2D conditions are assumed. From a qualitative perspective, 1D and 2D approximations certainly become valid when the anisotropy is large, but in addition, the interaction strength needs to be above a certain threshold.



قيم البحث

اقرأ أيضاً

64 - M. D. Lee , S. A. Morgan 2002
In two dimensions the Gross-Pitaevskii equation for a cold, dilute gas of bosons has an energy dependent coupling parameter describing particle interactions. We present numerical solutions of this equation for bosons in harmonic traps and show that t he results can be quite sensitive to the precise form of the coupling parameter that is used.
We consider the two-dimensional Gross-Pitaevskii equation describing a Bose-Einstein condensate in an isotropic harmonic trap. In the small coupling regime, this equation is accurately approximated over long times by the corresponding nonlinear reson ant system whose structure is determined by the fully resonant spectrum of the linearized problem. We focus on two types of consistent truncations of this resonant system: first, to sets of modes of fixed angular momentum, and second, to excited Landau levels. Each of these truncations admits a set of explicit analytic solutions with initial conditions parametrized by three complex numbers. Viewed in position space, the fixed angular momentum solutions describe modulated oscillations of dark rings, while the excited Landau level solutions describe modulated precession of small arrays of vortices and antivortices. We place our findings in the context of similar results for other spatially confined nonlinear Hamiltonian systems in recent literature.
We review the stochastic Gross-Pitaevskii approach for non-equilibrium finite temperature Bose gases, focussing on the formulation of Stoof; this method provides a unified description of condensed and thermal atoms, and can thus describe the physics of the critical fluctuation regime. We discuss simplifications of the full theory, which facilitate straightforward numerical implementation, and how the results of such stochastic simulations can be interpreted, including the procedure for extracting phase-coherent (`condensate) and density-coherent (`quasi-condensate) fractions. The power of this methodology is demonstrated by successful ab initio modelling of several recent atom chip experiments, with the important information contained in each individual realisation highlighted by analysing dark soliton decay within a phase-fluctuating condensate.
The Gross-Pitaevskii equation (GPE) plays an important role in the description of Bose-Einstein condensates (BECs) at the mean-field level. The GPE belongs to the class of non-linear Schrodinger equations which are known to feature dynamical instabil ity and collapse for attractive non-linear interactions. We show that the GPE with repulsive non-linear interactions typical for BECs features chaotic wave dynamics. We find positive Lyapunov exponents for BECs expanding in periodic and aperiodic smooth external potentials as well as disorder potentials. Our analysis demonstrates that wave chaos characterized by the exponential divergence of nearby initial wavefunctions is to be distinguished from the notion of non-integrability of non-linear wave equations. We discuss the implications of these observations for the limits of applicability of the GPE, the problem of Anderson localization, and the properties of the underlying many-body dynamics.
125 - T. Morgan , Th. Busch 2013
We examine the stability and dynamics of a family of crossed dark solitons in a harmonically confined Bose-Einstein condensate in two dimensions. Working in a regime where the fundamental snake instability is suppressed, we show the existence of an i nstability which leads to an interesting collapse and revival of the initial state for the fundamental case of two crossed solitons. The instability originates from the singular point where the solitons cross, and we characterise it by examining the Bogoliubov spectrum. Finally, we extend the treatment to systems of higher symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا