ﻻ يوجد ملخص باللغة العربية
By exact numerical solutions of the Gross-Pitaevskii (GP) equation in 3D, we assess the validity of 1D and 2D approximations in the study of Bose-Einstein condensates confined in harmonic trap potentials. Typically, these approximations are performed when one or more of the harmonic frequencies are much greater than the remaining ones, using arguments based on the adiabatic evolution of the initial approximated state. Deviations from the 3D solution are evaluated as a function of both the effective interaction strength and the ratio between the trap frequencies that define the reduced dimension where the condensate is confined. The observables analyzed are both stationary and dynamical character, namely, the chemical potential, the wave function profiles, and the time evolution of the approximated 1D and 2D stationary states, considered as initial states in the 3D GP equation. Our study, besides setting quantitative limits on approximations previously developed, should be useful in actual experimental studies where quasi-1D and quasi-2D conditions are assumed. From a qualitative perspective, 1D and 2D approximations certainly become valid when the anisotropy is large, but in addition, the interaction strength needs to be above a certain threshold.
In two dimensions the Gross-Pitaevskii equation for a cold, dilute gas of bosons has an energy dependent coupling parameter describing particle interactions. We present numerical solutions of this equation for bosons in harmonic traps and show that t
We consider the two-dimensional Gross-Pitaevskii equation describing a Bose-Einstein condensate in an isotropic harmonic trap. In the small coupling regime, this equation is accurately approximated over long times by the corresponding nonlinear reson
We review the stochastic Gross-Pitaevskii approach for non-equilibrium finite temperature Bose gases, focussing on the formulation of Stoof; this method provides a unified description of condensed and thermal atoms, and can thus describe the physics
The Gross-Pitaevskii equation (GPE) plays an important role in the description of Bose-Einstein condensates (BECs) at the mean-field level. The GPE belongs to the class of non-linear Schrodinger equations which are known to feature dynamical instabil
We examine the stability and dynamics of a family of crossed dark solitons in a harmonically confined Bose-Einstein condensate in two dimensions. Working in a regime where the fundamental snake instability is suppressed, we show the existence of an i