ترغب بنشر مسار تعليمي؟ اضغط هنا

Wave chaos in the non-equilibrium dynamics of the Gross-Pitaevskii equation

506   0   0.0 ( 0 )
 نشر من قبل Iva Brezinova
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Gross-Pitaevskii equation (GPE) plays an important role in the description of Bose-Einstein condensates (BECs) at the mean-field level. The GPE belongs to the class of non-linear Schrodinger equations which are known to feature dynamical instability and collapse for attractive non-linear interactions. We show that the GPE with repulsive non-linear interactions typical for BECs features chaotic wave dynamics. We find positive Lyapunov exponents for BECs expanding in periodic and aperiodic smooth external potentials as well as disorder potentials. Our analysis demonstrates that wave chaos characterized by the exponential divergence of nearby initial wavefunctions is to be distinguished from the notion of non-integrability of non-linear wave equations. We discuss the implications of these observations for the limits of applicability of the GPE, the problem of Anderson localization, and the properties of the underlying many-body dynamics.



قيم البحث

اقرأ أيضاً

127 - Yagmur Kati 2021
The interplay of fluctuations, ergodicity, and disorder in many-body interacting systems has been striking attention for half a century, pivoted on two celebrated phenomena: Anderson localization predicted in disordered media, and Fermi-Pasta-Ulam-Ts ingou (FPUT) recurrence observed in a nonlinear system. The destruction of Anderson localization by nonlinearity and the recovery of ergodicity after long enough computational times lead to more questions. This thesis is devoted to contributing to the insight of the nonlinear system dynamics in and out of equilibrium. Focusing mainly on the GP lattice, we investigated elementary fluctuations close to zero temperature, localization properties, the chaotic subdiffusive regimes, and the non-equipartition of energy in non-Gibbs regime. Initially, we probe equilibrium dynamics in the ordered GP lattice and report a weakly non-ergodic dynamics, and an ergodic part in the non-Gibbs phase that implies the Gibbs distribution should be modified. Next, we include disorder in GP lattice, and build analytical expressions for the thermodynamic properties of the ground state, and identify a Lifshits glass regime where disorder dominates over the interactions. In the opposite strong interaction regime, we investigate the elementary excitations above the ground state and found a dramatic increase of the localization length of Bogoliubov modes (BM) with increasing particle density. Finally, we study non-equilibrium dynamics with disordered GP lattice by performing novel energy and norm density resolved wave packet spreading. In particular, we observed strong chaos spreading over several decades, and identified a Lifshits phase which shows a significant slowing down of sub-diffusive spreading.
We describe a method for evolving the projected Gross-Pitaevskii equation (PGPE) for an interacting Bose gas in a harmonic oscillator potential, with the inclusion of a long-range dipolar interaction. The central difficulty in solving this equation i s the requirement that the field is restricted to a small set of prescribed modes that constitute the low energy c-field region of the system. We present a scheme, using a Hermite-polynomial based spectral representation, that precisely implements this mode restriction and allows an efficient and accurate solution of the dipolar PGPE. We introduce a set of auxiliary oscillator states to perform a Fourier transform necessary to evaluate the dipolar interaction in reciprocal space. We extensively characterize the accuracy of our approach, and derive Ehrenfest equations for the evolution of the angular momentum.
We consider an effective scaling approach for the free expansion of a one-dimensional quantum wave packet, consisting in a self-similar evolution to be satisfied on average, i.e. by integrating over the coordinates. A direct comparison with the solut ion of the Gross-Pitaevskii equation shows that the effective scaling reproduces with great accuracy the exact evolution - the actual wave function is reproduced with a fidelity close to unity - for arbitrary values of the interactions. This result represents a proof-of-concept of the effectiveness of the scaling ansatz, which has been used in different forms in the literature but never compared with the exact evolution.
We consider the two-dimensional Gross-Pitaevskii equation describing a Bose-Einstein condensate in an isotropic harmonic trap. In the small coupling regime, this equation is accurately approximated over long times by the corresponding nonlinear reson ant system whose structure is determined by the fully resonant spectrum of the linearized problem. We focus on two types of consistent truncations of this resonant system: first, to sets of modes of fixed angular momentum, and second, to excited Landau levels. Each of these truncations admits a set of explicit analytic solutions with initial conditions parametrized by three complex numbers. Viewed in position space, the fixed angular momentum solutions describe modulated oscillations of dark rings, while the excited Landau level solutions describe modulated precession of small arrays of vortices and antivortices. We place our findings in the context of similar results for other spatially confined nonlinear Hamiltonian systems in recent literature.
We review the stochastic Gross-Pitaevskii approach for non-equilibrium finite temperature Bose gases, focussing on the formulation of Stoof; this method provides a unified description of condensed and thermal atoms, and can thus describe the physics of the critical fluctuation regime. We discuss simplifications of the full theory, which facilitate straightforward numerical implementation, and how the results of such stochastic simulations can be interpreted, including the procedure for extracting phase-coherent (`condensate) and density-coherent (`quasi-condensate) fractions. The power of this methodology is demonstrated by successful ab initio modelling of several recent atom chip experiments, with the important information contained in each individual realisation highlighted by analysing dark soliton decay within a phase-fluctuating condensate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا