ترغب بنشر مسار تعليمي؟ اضغط هنا

Passive Tracer Dynamics in Slow-Bond Problem

108   0   0.0 ( 0 )
 نشر من قبل Meesoon Ha
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Asymptotic Kardar-Parisi-Zhang (KPZ) properties are investigated in the totally asymmetric simple exclusion process (TASEP) with a localized geometric defect. In particular, we focus on the universal nature of nonequilibrium steady states of the modified TASEP. Since the original TASEP belongs to the KPZ universality class, it is mathematically and physically a quite interesting question whether the localized columnar defect, the slow bond (SB), is really always relevant to the KPZ universality or not. However, it is numerically controversial to address the possibility of the non-queued SB phase in the weak-strength SB limit. Based on the detailed statistical analysis of KPZ-type growing interfaces, we present a comprehensive view of the non-queue SB phase, compared to finite-size crossover effects that reported in our earlier work [Soh {it et al.}, Phys. Rev. E {bf 95}, 042123 (2017)]. Moreover, we employ two types of passive tracer dynamics as the probe of the SB dynamics. Finally, we provide intuitive arguments for additional clues to resolve the controversy of the SB problem.



قيم البحث

اقرأ أيضاً

169 - K. Trachenko , A. Zaccone 2020
We propose an atomistic model for correlated particle dynamics in liquids and glasses predicting both slow stretched-exponential relaxation (SER) and fast compressed-exponential relaxation (CER). The model is based on the key concept of elastically i nteracting local relaxation events. SER is related to slowing down of dynamics of local relaxation events as a result of this interaction, whereas CER is related to the avalanche-like dynamics in the low-temperature glass state. The model predicts temperature dependence of SER and CER seen experimentally and recovers the simple, Debye, exponential decay at high temperature. Finally, we reproduce SER to CER crossover across the glass transition recently observed in metallic glasses.
We present some exact results on bond percolation. We derive a relation that specifies the consequences for bond percolation quantities of replacing each bond of a lattice $Lambda$ by $ell$ bonds connecting the same adjacent vertices, thereby yieldin g the lattice $Lambda_ell$. This relation is used to calculate the bond percolation threshold on $Lambda_ell$. We show that this bond inflation leaves the universality class of the percolation transition invariant on a lattice of dimensionality $d ge 2$ but changes it on a one-dimensional lattice and quasi-one-dimensional infinite-length strips. We also present analytic expressions for the average cluster number per vertex and correlation length for the bond percolation problem on the $N to infty$ limits of several families of $N$-vertex graphs. Finally, we explore the effect of bond vacancies on families of graphs with the property of bounded diameter as $N to infty$.
74 - P.E. Berche 2002
We investigate by Monte Carlo simulations the critical properties of the three-dimensional bond-diluted Ising model. The phase diagram is determined by locating the maxima of the magnetic susceptibility and is compared to mean-field and effective-med ium approximations. The calculation of the size-dependent effective critical exponents shows the competition between the different fixed points of the model as a function of the bond dilution.
We investigate and contrast, via entropic sampling based on the Wang-Landau algorithm, the effects of quenched bond randomness on the critical behavior of two Ising spin models in 2D. The random bond version of the superantiferromagnetic (SAF) square model with nearest- and next-nearest-neighbor competing interactions and the corresponding version of the simple Ising model are studied and their general universality aspects are inspected by a detailed finite-size scaling (FSS) analysis. We find that, the random bond SAF model obeys weak universality, hyperscaling, and exhibits a strong saturating behavior of the specific heat due to the competing nature of interactions. On the other hand, for the random Ising model we encounter some difficulties for a definite discrimination between the two well-known scenarios of the logarithmic corrections versus the weak universality. Yet, a careful FSS analysis of our data favors the field-theoretically predicted logarithmic corrections.
The statistics of critical spin-spin correlation functions in Ising systems with non-frustrated disorder are investigated on a strip geometry, via numerical transfer-matrix techniques. Conformal invariance concepts are used, in order to test for loga rithmic corrections to pure power-law decay against distance. Fits of our data to conformal-invariance expressions, specific to logarithmic corrections to correlations on strips, give results with the correct sign, for the moments of order $n=0-4$ of the correlation-function distribution. We find an interval of disorder strength along which corrections to pure-system behavior can be decomposed into the product of a known $n$-dependent factor and an approximately $n$-independent one, in accordance with predictions. A phenomenological fitting procedure is proposed, which takes partial account of subdominant terms of correlation-function decay on strips. In the low-disorder limit, it gives results in fairly good agreement with theoretical predictions, provided that an additional assumption is made.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا