ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational lensing study of cold dark matter led galactic halo

90   0   0.0 ( 0 )
 نشر من قبل Arunava Bhadra Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work the space-time geometry of the halo region in spiral galaxies is obtained considering the observed flat galactic rotation curve feature, invoking the Tully-Fisher relation and assuming the presence of cold dark matter in the galaxy. The gravitational lensing analysis is performed treating the so obtained space-time as a gravitational lens. It is found that the aforementioned space-time as the gravitational lens can consistently explain the galaxy-galaxy weak gravitational lensing observations and the lensing observations of the well-known Abell 370 galaxy cluster.



قيم البحث

اقرأ أيضاً

The higher dimensional Weyl curvature induces on the brane a new source of gravity. This Weyl fluid of geometrical origin (reducing in the spherically symmetric, static configuration to a dark radiation and dark pressure) modifies space-time geometry around galaxies and has been shown to explain the flatness of galactic rotation curves. Independent observations for discerning between the Weyl fluid and other dark matter models are necessary. Gravitational lensing could provide such a test. Therefore we study null geodesics and weak gravitational lensing in the dark radiation dominated region of galaxies in a class of spherically symmetric brane-world metrics. We find that the lensing profile in the brane-world scenario is distinguishable from dark matter lensing, despite both the brane-world scenario and dark matter models fitting the rotation curve data. In particular, in the asymptotic regions light deflection is 18% enhanced as compared to dark matter halo predictions. For a linear equation of state of the Weyl fluid we further find a critical radius, below which brane-world effects reduce, while above it they amplify light deflection. This is in contrast to any dark matter model, the addition of which always increases the deflection angle.
196 - Masami Tsuchiya 2013
We study fundamental properties of steady, spherically symmetric, isothermal galactic outflow in appropriate gravitational potential models. We aim at constructing a universal scale free theory not only for galactic winds, but also for winds from clu sters/groups of galaxies. In particular, we consider effects of mass-density distribution on the formation of transonic galactic outflows under several models of the density distribution profile predicted by cosmological simulations of structure formation based on the cold dark matter (CDM) scenario. In this study, we have clarified that there exists two types of transonic solutions: outflows from the central region and from distant region with a finite radius, depending upon the density distribution of the system. The system with sufficiently steep density gradient at the center is allowed to have the transonic outflows from the center. The resultant criterion intriguingly indicates that the density gradient at the center must be steeper than that of the prediction of conventional CDM model including Navarro, Frenk & White (1997) and Moore et al. (1999). This result suggests that an additional steeper density distribution originated by baryonic systems such as the stellar component and/or the central massive black hole is required to realize transonic outflow from the central region. On the other hand, we predict the outflow, which is started at the outskirts of the galactic center and is slowly-accelerated without any drastic energy injection like starburst events. These transonic outflows may contribute secularly to the metal enrichment of the intergalactic medium.
Dark energy/matter unification is first demonstrated within the framework of a simplified model. Geodetic evolution of a cosmological constant dominated bubble Universe, free of genuine matter, is translated into a specific FRW cosmology whose effe ctively induced dark component highly resembles the cold dark matter ansatz. The realistic extension constitutes a dark soliton which bridges past (radiation and/or matter dominated) and future (cosmological constant dominated) Einstein regimes; its experimental signature is a moderate redshift dependent cold dark matter deficiency function.
For the first time, we obtain the analytical form of black hole space-time metric in dark matter halo for the stationary situation. Using the relation between the rotation velocity (in the equatorial plane) and the spherical symmetric space-time metr ic coefficient, we obtain the space-time metric for pure dark matter. By considering the dark matter halo in spherical symmetric space-time as part of the energy-momentum tensors in the Einstein field equation, we then obtain the spherical symmetric black hole solutions in dark matter halo. Utilizing Newman-Jains method, we further generalize spherical symmetric black holes to rotational black holes. As examples, we obtain the space-time metric of black holes surrounded by Cold Dark Matter and Scalar Field Dark Matter halos, respectively. Our main results regarding the interaction between black hole and dark matter halo are as follows: (i) For both dark matter models, the density profile always produces cusp phenomenon in small scale in the relativity situation; (ii) Dark matter halo makes the black hole horizon to increase but the ergosphere to decrease, while the magnitude is small; (iii) Dark matter does not change the singularity of black holes. These results are useful to study the interaction of black hole and dark matter halo in stationary situation. Particularly, the cusp produced in the $0sim 1$ kpc scale would be observable in the Milky Way. Perspectives on future work regarding the applications of our results in astrophysics are also briefly discussed.
Stellar-mass binary black holes (BBHs) may merge in the vicinity of a supermassive black hole (SMBH). It is suggested that the gravitational-wave (GW) emitted by a BBH has a high probability to be lensed by the SMBH if the BBHs orbit around the SMBH (i.e., the outer orbit) has a period of less than a year and is less than the duration of observation of the BBH by a space-borne GW observatory. For such a BBH + SMBH triple system, the de Sitter precession of the BBHs orbital plane is also significant. In this work, we thus study GW waveforms emitted by the BBH and then modulated by the SMBH due to effects including Doppler shift, de Sitter precession, and gravitational lensing. We show specifically that for an outer orbital period of 0.1 yr and an SMBH mass of $10^7 M_odot$, there is a 3%-10% chance for the standard, strong lensing signatures to be detectable by space-borne GW detectors such as LISA and/or TianGO. For more massive lenses ($gtrsim 10^8 M_odot$) and more compact outer orbits with periods <0.1 yr, retro-lensing of the SMBH might also have a 1%-level chance of detection. Furthermore, by combining the lensing effects and the dynamics of the outer orbit, we find the mass of the central SMBH can be accurately determined with a fraction error of $sim 10^{-4}$. This is much better than the case of static lensing because the degeneracy between the lens mass and the sources angular position is lifted by the outer orbital motion. Including lensing effects also allows the de Sitter precession to be detectable at a precession period 3 times longer than the case without lensing. Lastly, we demonstrate that one can check the consistency between the SMBHs mass determined from the orbital dynamics and the one inferred from gravitational lensing, which serves as a test on theories behind both phenomena. The statistical error on the deviation can be constrained to a 1% level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا