ﻻ يوجد ملخص باللغة العربية
The higher dimensional Weyl curvature induces on the brane a new source of gravity. This Weyl fluid of geometrical origin (reducing in the spherically symmetric, static configuration to a dark radiation and dark pressure) modifies space-time geometry around galaxies and has been shown to explain the flatness of galactic rotation curves. Independent observations for discerning between the Weyl fluid and other dark matter models are necessary. Gravitational lensing could provide such a test. Therefore we study null geodesics and weak gravitational lensing in the dark radiation dominated region of galaxies in a class of spherically symmetric brane-world metrics. We find that the lensing profile in the brane-world scenario is distinguishable from dark matter lensing, despite both the brane-world scenario and dark matter models fitting the rotation curve data. In particular, in the asymptotic regions light deflection is 18% enhanced as compared to dark matter halo predictions. For a linear equation of state of the Weyl fluid we further find a critical radius, below which brane-world effects reduce, while above it they amplify light deflection. This is in contrast to any dark matter model, the addition of which always increases the deflection angle.
In this work the space-time geometry of the halo region in spiral galaxies is obtained considering the observed flat galactic rotation curve feature, invoking the Tully-Fisher relation and assuming the presence of cold dark matter in the galaxy. The
This paper reviews a phenomenological approach to the gravitational lensing by exotic objects such as the Ellis wormhole lens, where exotic lens objects may follow a non-standard form of the equation of state or may obey a modified gravity theory. A
The gravitational lensing effects in the weak gravitational field by exotic lenses have been investigated intensively to find nonluminous exotic objects. Gravitational lensing based on 1/r^n fall-off metric, as a one-parameter model that can treat by
We propose a dark energy model with a logarithmic cosmological fluid which can result in a very small current value of the dark energy density and avoid the coincidence problem without much fine-tuning. We construct a couple of dynamical models that
The recent observation of the the gravitational wave event GW170817 and of its electromagnetic counterpart GRB170817A, from a binary neutron star merger, has established that the speed of gravitational waves deviates from the speed of light by less t