ﻻ يوجد ملخص باللغة العربية
Novel forms of beam generation and propagation based on structured light and orbital angular momentum (OAM) have gained significant interest over the past several years. Indeed, dynamic OAM can manifest at a given propagation distance in different forms , including: (1) a simple Gaussian-like beam dot revolves around an offset central axis in time, and (2) a Laguerre-Gaussian (LG) beam with a helically twisting phase front that rotates around its own central null in time. In this paper, we numerically generate dynamic spatiotemporal beams that combine these two forms of orbital-angular-momenta by coherently adding multiple frequency comb lines such that each carries a superposition of multiple LG(l,p) modes containing one l value but multiple p values. The generated beams can have different non-zero rotating l values with high modal purities that exhibit both rotation and revolution in time at a given propagation distance. In our simulation results, we were able to control and vary several parameters, including the: (i) rotating l value from +1 to +3 with modal purities of ~96%, (ii) revolving speed of 0.2-0.6 THz, (iii) beam waist of 0.15-0.5 mm, and (iv) revolving radius of 0.75-1.5 mm.
Today, it is well known that light possesses a linear momentum which is along the propagation direction. Besides, scientists also discovered that light can possess an angular momentum (AM), a spin angular momentum (SAM) associated with circular polar
Recently, spatiotemporal optical vortex pulses carrying a purely transverse intrinsic orbital angular momentum were generated experimentally [{it Optica} {bf 6}, 1547 (2019); {it Nat. Photon.} {bf 14}, 350 (2020)]. However, an accurate theoretical an
Vortices are whirling disturbances commonly found in nature ranging from tremendously small scales in Bose-Einstein condensates to cosmologically colossal scales in spiral galaxies. An optical vortex, generally associated with a spiral phase, can car
Recently, photons have been observed to possess transverse orbital angular momentum (OAM); however, it is unclear as whether they can hold a transverse OAM higher than 1. Here, we theoretically and experimentally demonstrate that high-order spatiotem
Optical-frequency combs enable measurement precision at the 20th digit, and accuracy entirely commensurate with their reference oscillator. A new direction in experiments is the creation of ultracompact frequency combs by way of nonlinear parametric