ترغب بنشر مسار تعليمي؟ اضغط هنا

Targeted Synthesis for Programming with Data Invariants

37   0   0.0 ( 0 )
 نشر من قبل John Sarracino
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Programmers frequently maintain implicit data invariants, which are relations between different data structures in a program. Traditionally, such invariants are manually enforced and checked by programmers. This ad-hoc practice is difficult because the programmer must manually account for all the locations and configurations that break an invariant. Moreover, implicit invariants are brittle under code-evolution: when the invariants and data structures change, the programmer must repeat the process of manually repairing all of the code locations where invariants are violated. A much better approach is to introduce data invariants as a language feature and rely on language support to maintain invariants. To handle this challenge, we introduce Targeted Synthesis, a technique for integrating data invariants with invariant-agnostic imperative code at compile-time. This technique is nontrivial due to the complex structure of both invariant specifications, as well as general imperative code. The key insight is to take a language co-design approach involving both the language of data invariants, as well as the imperative language. We leverage this insight to produce two high-level results: first, we support a language with iterators without requiring general quantified reasoning, and second, we infer complicated invariant-preserving patches. We evaluate these claims through a language termed Spyder, a core calculus of data invariants over imperative iterator programs. We evaluate the expressiveness and performance of Spyder on a variety of programs inspired by web applications, and we find that Spyder efficiently compiles and maintains data invariants.



قيم البحث

اقرأ أيضاً

The field of declarative stream programming (discrete time, clocked synchronous, modular, data-centric) is divided between the data-flow graph paradigm favored by domain experts, and the functional reactive paradigm favored by academics. In this pape r, we describe the foundations of a framework for unifying functional and data-flow styles that differs from FRP proper in significant ways: It is based on set theory to match the expectations of domain experts, and the two paradigms are reduced symmetrically to a low-level middle ground, with strongly compositional semantics. The design of the framework is derived from mathematical first principles, in particular coalgebraic coinduction and a standard relational model of stateful computation. The abstract syntax and semantics introduced here constitute the full core of a novel stream programming language.
We present the guarded lambda-calculus, an extension of the simply typed lambda-calculus with guarded recursive and coinductive types. The use of guarded recursive types ensures the productivity of well-typed programs. Guarded recursive types may be transformed into coinductive types by a type-former inspired by modal logic and Atkey-McBride clock quantification, allowing the typing of acausal functions. We give a call-by-name operational semantics for the calculus, and define adequate denotational semantics in the topos of trees. The adequacy proof entails that the evaluation of a program always terminates. We demonstrate the expressiveness of the calculus by showing the definability of solutions to Ruttens behavioural differential equations. We introduce a program logic with L{o}b induction for reasoning about the contextual equivalence of programs.
Modular programming is a cornerstone in software development, as it allows to build complex systems from the assembly of simpler components, and support reusability and substitution principles. In a distributed setting, component assembly is supporte d by communication that is often required to follow a prescribed protocol of interaction. In this paper, we present a language for the modular development of distributed systems, where the assembly of components is supported by a choreography that specifies the communication protocol. Our language allows to separate component behaviour, given in terms of reactive data ports, and choreographies, specified as first class entities. This allows us to consider reusability and substitution principles for both components and choreographies. We show how our model can be compiled into a more operational perspective in a provably-correct way, and we present a typing discipline that addresses communication safety and progress of systems, where a notion of substitutability naturally arises.
Eff is a programming language based on the algebraic approach to computational effects, in which effects are viewed as algebraic operations and effect handlers as homomorphisms from free algebras. Eff supports first-class effects and handlers through which we may easily define new computational effects, seamlessly combine existing ones, and handle them in novel ways. We give a denotational semantics of eff and discuss a prototype implementation based on it. Through examples we demonstrate how the standard effects are treated in eff, and how eff supports programming techniques that use various forms of delimited continuations, such as backtracking, breadth-first search, selection functionals, cooperative multi-threading, and others.
While modern software development heavily uses versioned packages, programming languages rarely support the concept
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا