ترغب بنشر مسار تعليمي؟ اضغط هنا

Mean-field phases of an ultracold gas in a quasicrystalline potential

123   0   0.0 ( 0 )
 نشر من قبل Callum W Duncan Mr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent experimental advancement to realise ultracold gases scattering off an eight-fold optical potential [Phys. Rev. Lett. 122, 110404 (2019)] heralds the beginning of a new technique to study the properties of quasicrystalline structures. Quasicrystals possess long-range order but are not periodic, and are still little studied in comparison to their periodic counterparts. Here, we consider an ultracold bosonic gas in an eight-fold symmetric lattice and assume a toy model where the atoms occupy the ground states of the local minima of the potential. The ground state phases of the system are studied, with particular interest in the local nature of the phases. The usual Mott-insulator, density wave, and supersolid phases of the standard and extended Bose-Hubbard model are observed. For non-zero long-range interactions, we find that density wave states can spontaneously break the eight-fold symmetry, and may even possess no rotational symmetry. We find the local variation in the number of nearest neighbours to play a vital role in the phase transitions, local structure, and global symmetries of the ground states. This variation in the number of nearest neighbours is not a unique property of the considered eight-fold lattice, and we expect our results to be generalisable to any quasicrystalline potential where there are only small position dependent variations in the site energy, tunnelling and interactions.

قيم البحث

اقرأ أيضاً

We investigate the mean-field phase diagram of the Bose-Hubbard model with infinite-range interactions in two dimensions. This model describes ultracold bosonic atoms confined by a two-dimensional optical lattice and dispersively coupled to a cavity mode with the same wavelength as the lattice. We determine the ground-state phase diagram for a grand-canonical ensemble by means of analytical and numerical methods. Our results mostly agree with the ones reported in Dogra et al. [PRA 94, 023632 (2016)], and have a remarkable qualitative agreement with the quantum Monte Carlo phase diagrams of Flottat et al. [PRB 95, 144501 (2017)]. The salient differences concern the stability of the supersolid phases, which we discuss in detail. Finally, we discuss differences and analogies between the ground state properties of strong long-range interacting bosons with the ones predicted for repulsively interacting dipolar bosons in two dimensions.
Phasonic degrees of freedom are unique to quasiperiodic structures, and play a central role in poorly-understood properties of quasicrystals from excitation spectra to wavefunction statistics to electronic transport. However, phasons are challenging to access dynamically in the solid state due to their complex long-range character and the effects of disorder and strain. We report phasonic spectroscopy of a quantum gas in a one-dimensional quasicrystalline optical lattice. We observe that strong phasonic driving produces a nonperturbative high-harmonic plateau strikingly different from the effects of standard dipolar driving. Tuning the potential from crystalline to quasicrystalline, we identify spectroscopic signatures of quasiperiodicity and interactions and map the emergence of a multifractal energy spectrum, opening a path to direct imaging of the Hofstadter butterfly.
We report on the controlled insertion of individual Cs atoms into an ultracold Rb gas at about 400 nK. This requires to combine the techniques necessary for cooling, trapping and manipulating single laser cooled atoms around the Doppler temperature w ith an experiment to produce ultracold degenerate quantum gases. In our approach, both systems are prepared in separated traps and then combined. Our results pave the way for coherent interaction between a quantum gas and a single or few neutral atoms of another species.
Ultracold bosonic atoms in optical lattices self-organize into a variety of structural and quantum phases when placed into a single-mode cavity and pumped by a laser. Cavity optomechanical effects induce an atom density modulation at the cavity-mode wave length that competes with the optical lattice arrangement. Simultaneously short-range interactions via particle hopping promote superfluid order, such that a variety of structural and quantum coherent phases can occur. We analyze the emerging phase diagram in two dimensions by means of an extended Bose-Hubbard model using a local mean field approach combined with a superfluid cluster analysis. For commensurate ratios of the cavity and external lattice wave lengths the Mott insulator-superfluid transition is modified by the appearance of charge density wave and supersolid phases, at which the atomic density supports the buildup of a cavity field. For incommensurate ratios, the optomechanical forces induce the formation of Bose-glass and superglass phases, namely non-superfluid and superfluid phases, respectively, displaying quasi-periodic density modulations, which in addition can exhibit structural and superfluid stripe formation. The onset of such structures is constrained by the onsite interaction and is favourable at fractional densities. Experimental observables are identified and discussed.
We show how a fermionic quantum gas in an optical lattice and coupled to the field of an optical cavity can self-organize into a state in which the spontaneously emerging cavity field amplitude induces an artificial magnetic field. The fermions form either a chiral insulator or a chiral liquid carrying edge currents. The feedback mechanism via the cavity field enables robust and fast switching of the edge currents and the cavity output can be employed for non-destructive measurements of the atomic dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا