ﻻ يوجد ملخص باللغة العربية
Shift current is a DC current generated from nonlinear light-matter interaction in a non-centrosymmetric crystal and is considered a promising candidate for next generation photovoltaic devices. The mechanism for shift currents in real materials is, however, still not well understood, especially if electron-hole interactions are taken into account. Here, we employ a first-principles interacting Greens-function approach on the Keldysh contour to study photocurrents generated by nonlinear optical processes in real materials and discover a strong DC shift current at subbandgap excitation frequencies in monolayer GeS due to strongly bound excitons, as well as giant enhancement in the shift current coefficients at above bandgap photon frequencies. Our results suggest that atomically thin two-dimensional materials may be promising building blocks for next generation shift current devices with efficiencies beyond the Shockley-Queisser limit.
The photoconductions of ultrafast InGaAs:ErAs nanocomposites at low temperatures were investigated. The parabolic Tauc edge as well as the exponential Urbach tail are identified in the absorption spectrum. The Tauc edge supports that the density of s
A way to increase the Scanning Thermal Microscope (SThM) sensitivity in the harmonic 3w mode is to heat the probe with an AC current sufficiently high to generate a coupling between the AC and the DC signals. We detail in this paper how to properly t
Photo-induced phase transitions (PIPTs) provide an ultrafast, energy-efficient way for precisely manipulating the topological properties of transition-metal ditellurides, and can be used to stabilize a topological phase in an otherwise semiconducting
In this work we investigated thin films of the ferrimagnetic insulators YIG and NFO capped with thin Pt layers in terms of the longitudinal spin Seebeck effect (LSSE). The electric response detected in the Pt layer under an out-of-plane temperature g
A pressure-induced phase transition, associated with an increase of the coordination number of In and Ta, is detected beyond 13 GPa in InTaO4 by combining synchrotron x-ray diffraction and Raman measurements in a diamond anvil cell with ab-initio cal