ﻻ يوجد ملخص باللغة العربية
We investigate a model for opinion dynamics, where individuals (modeled by vertices of a graph) hold certain abstract opinions. As time progresses, neighboring individuals interact with each other, and this interaction results in a realignment of opinions closer towards each other. This mechanism triggers formation of consensus among the individuals. Our main focus is on strong consensus (i.e. global agreement of all individuals) versus weak consensus (i.e. local agreement among neighbors). By extending a known model to a more general opinion space, which lacks a central opinion acting as a contraction point, we provide an example of an opinion formation process on the one-dimensional lattice with weak consensus but no strong consensus.
A version of the Schelling model on $mathbb{Z}$ is defined, where two types of agents are allocated on the sites. An agent prefers to be surrounded by other agents of its own type, and may choose to move if this is not the case. It then sends a reque
During the last decades, quite a number of interacting particle systems have been introduced and studied in the border area of mathematics and statistical physics. Some of these can be seen as simplistic models for opinion formation processes in grou
When it comes to the mathematical modelling of social interaction patterns, a number of different models have emerged and been studied over the last decade, in which individuals randomly interact on the basis of an underlying graph structure and shar
A two-type version of the frog model on $mathbb{Z}^d$ is formulated, where active type $i$ particles move according to lazy random walks with probability $p_i$ of jumping in each time step ($i=1,2$). Each site is independently assigned a random numbe
Some stochastic systems are particularly interesting as they exhibit critical behavior without fine-tuning of a parameter, a phenomenon called self-organized criticality. In the context of driven-dissipative steady states, one of the main models is t