ﻻ يوجد ملخص باللغة العربية
A two-type version of the frog model on $mathbb{Z}^d$ is formulated, where active type $i$ particles move according to lazy random walks with probability $p_i$ of jumping in each time step ($i=1,2$). Each site is independently assigned a random number of particles. At time 0, the particles at the origin are activated and assigned type 1 and the particles at one other site are activated and assigned type 2, while all other particles are sleeping. When an active type $i$ particle moves to a new site, any sleeping particles there are activated and assigned type $i$, with an arbitrary tie-breaker deciding the type if the site is hit by particles of both types in the same time step. We show that the event $G_i$ that type $i$ activates infinitely many particles has positive probability for all $p_1,p_2in(0,1]$ ($i=1,2$). Furthermore, if $p_1=p_2$, then the types can coexist in the sense that $mathbb{P}(G_1cap G_2)>0$. We also formulate several open problems. For instance, we conjecture that, when the initial number of particles per site has a heavy tail, the types can coexist also when $p_1 eq p_2$.
Some stochastic systems are particularly interesting as they exhibit critical behavior without fine-tuning of a parameter, a phenomenon called self-organized criticality. In the context of driven-dissipative steady states, one of the main models is t
We give the ``quenched scaling limit of Bouchauds trap model in ${dge 2}$. This scaling limit is the fractional-kinetics process, that is the time change of a $d$-dimensional Brownian motion by the inverse of an independent $alpha$-stable subordinator.
In the parking model on $mathbb{Z}^d$, each vertex is initially occupied by a car (with probability $p$) or by a vacant parking spot (with probability $1-p$). Cars perform independent random walks and when they enter a vacant spot, they park there, t
A version of the Schelling model on $mathbb{Z}$ is defined, where two types of agents are allocated on the sites. An agent prefers to be surrounded by other agents of its own type, and may choose to move if this is not the case. It then sends a reque
We investigate the percolation phase transition for level sets of the Gaussian free field on $mathbb{Z}^d$, with $dgeqslant 3$, and prove that the corresponding critical parameter $h_*(d)$ is strictly positive for all $dgeqslant3$, thus settling an o