ﻻ يوجد ملخص باللغة العربية
Adiabatic quantum computing (AQC) can be protected against thermal excitations via an encoding into error detecting codes, supplemented with an energy penalty formed from a sum of commuting Hamiltonian terms. Earlier work showed that it is possible to suppress the initial thermally induced excitation out of the encoded ground state, in the case of local Markovian environments, by using an energy penalty strength that grows only logarithmically in the system size, at a fixed temperature. The question of whether this result applies beyond the initial time was left open. Here we answer this in the affirmative. We show that thermal excitations out of the encoded ground state can be suppressed at arbitrary times under the additional assumption that the total evolution time is polynomial in the system size. Thus, computational problems that can be solved efficiently using AQC in a closed system setting, can still be solved efficiently subject to coupling to a thermal environment. Our construction uses stabilizer subspace codes, which require at least $4$-local interactions to achieve this result.
Incorporating protection against quantum errors into adiabatic quantum computing (AQC) is an important task due to the inevitable presence of decoherence. Here we investigate an error-protected encoding of the AQC Hamiltonian, where qubit ensembles a
Reliable models of a large variety of open quantum systems can be described by Lindblad master equation. An important property of some open quantum systems is the existence of decoherence-free subspaces. In this paper, we develop tools for constructi
Coherent errors are a dominant noise process in many quantum computing architectures. Unlike stochastic errors, these errors can combine constructively and grow into highly detrimental overrotations. To combat this, we introduce a simple technique fo
We present an algorithm for manipulating quantum information via a sequence of projective measurements. We frame this manipulation in the language of stabilizer codes: a quantum computation approach in which errors are prevented and corrected in part
Quantum error-correcting codes are used to protect qubits involved in quantum computation. This process requires logical operators, acting on protected qubits, to be translated into physical operators (circuits) acting on physical quantum states. We