ﻻ يوجد ملخص باللغة العربية
We consider a Nonlinear Schrodinger Equation with a very general non linear term and with a trapping $delta $ potential on the line. We then discuss the asymptotic behavior of all its small solutions, generalizing a recent result by Masaki et al. We give also a result of dispersion in the case of defocusing equations with a non--trapping delta potential.
We consider the one-dimensional nonlinear Schrodinger equation with an attractive delta potential and mass-supercritical nonlinearity. This equation admits a one-parameter family of solitary wave solutions in both the focusing and defocusing cases. W
We consider a nonlinear Klein Gordon equation (NLKG) with short range potential with eigenvalues and show that in the contest of complex valued solutions the small standing waves are attractors for small solutions of the NLKG. This extends the result
For both the cubic Nonlinear Schrodinger Equation (NLS) as well as the modified Korteweg-de Vries (mKdV) equation in one space dimension we consider the set ${bf M}_N$ of pure $N$-soliton states, and their associated multisoliton solutions. We prov
We study the long time behavior of small (in $l^2$) solutions of discrete nonlinear Schrodinger equations with potential. In particular, we are interested in the case that the corresponding discrete Schrodinger operator has exactly two eigenvalues. W
Joining together virial inequalities by Kowalczyk, Martel and Munoz and Kowalczyk, Martel, Munoz and Van Den Bosch with our theory on how to derive nonlinear induced dissipation on discrete modes, and in particular the notion of Refined Profile, we s