ترغب بنشر مسار تعليمي؟ اضغط هنا

On stability of small solitons of the 1--D NLS with a trapping delta potential

121   0   0.0 ( 0 )
 نشر من قبل Scipio Cuccagna
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a Nonlinear Schrodinger Equation with a very general non linear term and with a trapping $delta $ potential on the line. We then discuss the asymptotic behavior of all its small solutions, generalizing a recent result by Masaki et al. We give also a result of dispersion in the case of defocusing equations with a non--trapping delta potential.



قيم البحث

اقرأ أيضاً

We consider the one-dimensional nonlinear Schrodinger equation with an attractive delta potential and mass-supercritical nonlinearity. This equation admits a one-parameter family of solitary wave solutions in both the focusing and defocusing cases. W e establish asymptotic stability for all solitary waves satisfying a suitable spectral condition, namely, that the linearized operator around the solitary wave has a two-dimensional generalized kernel and no other eigenvalues or resonances. In particular, we extend our previous result beyond the regime of small solitary waves and extend the results of Fukuizumi-Ohta-Ozawa and Kaminaga-Ohta from orbital to asymptotic stability for a suitable family of solitary waves.
We consider a nonlinear Klein Gordon equation (NLKG) with short range potential with eigenvalues and show that in the contest of complex valued solutions the small standing waves are attractors for small solutions of the NLKG. This extends the result s already known for the nonlinear Schrodinger equation and for the nonlinear Dirac equation. In addition, this extends a result of Bambusi and Cuccagna (which in turn was an extension of a result by Soffer and Weinstein) which considered only real valued solutions of the NLKG.
For both the cubic Nonlinear Schrodinger Equation (NLS) as well as the modified Korteweg-de Vries (mKdV) equation in one space dimension we consider the set ${bf M}_N$ of pure $N$-soliton states, and their associated multisoliton solutions. We prov e that (i) the set ${bf M}_N$ is a uniformly smooth manifold, and (ii) the ${bf M}_N$ states are uniformly stable in $H^s$, for each $s>-frac12$. One main tool in our analysis is an iterated Backlund transform, which allows us to nonlinearly add a multisoliton to an existing soliton free state (the soliton addition map) or alternatively to remove a multisoliton from a multisoliton state (the soliton removal map). The properties and the regularity of these maps are extensively studied.
83 - Masaya Maeda 2019
We study the long time behavior of small (in $l^2$) solutions of discrete nonlinear Schrodinger equations with potential. In particular, we are interested in the case that the corresponding discrete Schrodinger operator has exactly two eigenvalues. W e show that under the nondegeneracy condition of Fermi Golden Rule, all small solutions decompose into a nonlinear bound state and dispersive wave. We further show the instability of excited states and generalized equipartition property.
Joining together virial inequalities by Kowalczyk, Martel and Munoz and Kowalczyk, Martel, Munoz and Van Den Bosch with our theory on how to derive nonlinear induced dissipation on discrete modes, and in particular the notion of Refined Profile, we s how how to extend the theory by Kowalczyk, Martel, Munoz and Van Den Bosch to the case when there is a large number of discrete modes in the cubic NLS with a trapping potential which is associate to a repulsive potential by a series of Darboux transformations. This a simpler model than the kink stability for wave equations, but is still a classical one and retains some of the main difficulties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا