ترغب بنشر مسار تعليمي؟ اضغط هنا

A radio halo surrounding the Brightest Cluster Galaxy in RXCJ0232.2-4420: a mini-halo in transition ?

91   0   0.0 ( 0 )
 نشر من قبل Ruta Kale
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Diffuse radio sources associated with the intra-cluster medium are direct probes of the cosmic ray electrons and magnetic fields. We report the discovery of a diffuse radio source in the galaxy cluster RXCJ0232.2-4420 (SPT-CL J0232-4421, $z=0.2836$) using 606 MHz observations with the Giant Metrewave Radio Telescope. The diffuse radio source surrounds the Brightest Cluster Galaxy in the cluster like typical radio mini-halos. However the total extent of it is $550times800$ kpc$^{2}$, which is larger than mini-halos and similar to that of radio halos. The BCG itself is also a radio source with a marginally resolved core at $7$ (30 kpc) resolution. We measure the 606 MHz flux density of the RH to be $52pm5$ mJy. Assuming a spectral index of 1.3, the 1.4 GHz radio power is $4.5 times 10^{24}$ W Hz$^{-1}$. The dynamical state of the cluster has been inferred to be relaxed and also as complex depending on the classification methods based on the morphology of the X-ray surface brightness. This system thus seems to be in the transition phase from a mini-halo to a radio halo.

قيم البحث

اقرأ أيضاً

We report the discovery of extended radio emission in the Phoenix cluster (SPT-CL J2344-4243, z=0.596) with the GMRT at 610 MHz. The diffuse emission extends over a region of at least 400-500 kpc and surrounds the central radio source of the Brightes t Cluster Galaxy, but does not appear to be directly associated with it. We classify the diffuse emission as a radio mini-halo, making it the currently most distant mini-halo known. Radio mini-halos have been explained by synchrotron emitting particles re-accelerated via turbulence, possibly induced by gas sloshing generated from a minor merger event. Chandra observations show a non-concentric X-ray surface brightness distribution, which is consistent with this sloshing interpretation. The mini-halo has a flux density of $17pm5$ mJy, resulting in a 1.4 GHz radio power of ($10.4pm3.5) times 10^{24}$ W Hz$^{-1}$. The combined cluster emission, which includes the central compact radio source, is also detected in a shallow GMRT 156 MHz observation and together with the 610 MHz data we compute a spectral index of $-0.84pm0.12$ for the overall cluster radio emission. Given that mini-halos typically have steeper radio spectra than cluster radio galaxies, this spectral index should be taken as an upper limit for the mini-halo.
126 - Viral Parekh 2021
RXCJ0232.2-4420, at $z$ = 0.28, is a peculiar system hosting a radio halo source around the cool-core of the cluster. To investigate its formation and nature, we used archival {it Chandra} and XMM-textit{Newton} X-ray data to study the dynamical stat e of the cluster and detect possible substructures in the hot gas. Its X-ray surface brightness distribution shows no clear disruption except an elongation in the North-East to South-West direction. We perform the unsharp masking technique and compute morphology parameters (Gini, $M_{20}$ and concentration) to characterise the degree of disturbance in the projected X-ray emission. Both of these methods revealed a substructure, which is located at $sim$ 1$$ from the cluster core in the South-West direction. Previous spectral analysis conducted for RXCJ0232.2-4420 concluded that there are a short cooling time and low entropy at the cluster centre, indicating that the cluster has a cool core. Thus, we suggest that RXCJ0232.2-4420 may be a system where the core of the cluster is not showing any sign of disturbance, but the South-West substructure could be pumping energy to the detected radio halo via turbulence.
74 - T. Venturi 2017
We report on a spectral study at radio frequencies of the giant radio halo in A2142 (z=0.0909), which we performed to explore its nature and origin. A2142 is not a major merger and the presence of a giant radio halo is somewhat surprising. We perform ed deep radio observations with the GMRT at 608 MHz, 322 MHz, and 234 MHz and with the VLA in the 1-2 GHz band. We obtained high-quality images at all frequencies in a wide range of resolutions. The radio halo is well detected at all frequencies and extends out to the most distant cold front in A2142. We studied the spectral index in two regions: the central part of the halo and a second region in the direction of the most distant south-eastern cold front, selected to follow the bright part of the halo and X-ray emission. We complemented our observations with a preliminary LOFAR image at 118 MHz and with the re-analysis of archival VLA data at 1.4 GHz. The two components of the radio halo show different observational properties. The central brightest part has higher surface brightess and a spectrum whose steepness is similar to those of the known radio halos, i.e. $alpha^{rm 1.78~GHz}_{rm 118~MHz}=1.33pm 0.08$. The ridge, which fades into the larger scale emission, is broader in size and has considerably lower surface brightess and a moderately steeper spectrum, i.e. $alpha^{rm 1.78~GHz}_{rm 118~MHz}sim 1.5$. We propose that the brightest part of the radio halo is powered by the central sloshing in A2142, similar to what has been suggested for mini-halos, or by secondary electrons generated by hadronic collisions in the ICM. On the other hand, the steeper ridge may probe particle re-acceleration by turbulence generated either by stirring the gas and magnetic fields on a larger scale or by less energetic mechanisms, such as continuous infall of galaxy groups or an off-axis merger.
We investigate the possible presence of diffuse radio emission in the intermediate redshift, massive cluster PLCK G285.0-23.7 (z=0.39, M_500 = 8.39 x 10^(14) M_Sun). Our 16cm-band ATCA observations of PLCK G285.0-23.7 allow us to reach a rms noise le vel of ~11 microJy/beam on the wide-band (1.1-3.1 GHz), full-resolution (~5 arcsec) image of the cluster, making it one of the deepest ATCA images yet published. We also re-image visibilities at lower resolution in order to achieve a better sensitivity to low-surface-brightness extended radio sources. We detect one of the lowest luminosity radio halos known at z>0.35, characterised by a slight offset from the well-studied 1.4 GHz radio power vs. cluster mass correlation. Similarly to most known radio-loud clusters (i.e. those hosting diffuse non-thermal sources), PLCK G285.0-23.7 has a disturbed dynamical state. Our analysis reveals a similarly elongated X-ray and radio morphology. While the size of the radio halo in PLCK G285.0-23.7 is smaller than lower redshift radio-loud clusters in the same mass range, it shows a similar correlation with the cluster virial radius, as expected in the framework of hierarchical structure formation.
We present a low-frequency view of the Perseus cluster with new observations from the Karl G. Jansky Very Large Array (JVLA) at 230-470 MHz. The data reveal a multitude of new structures associated with the mini-halo. The mini-halo seems to be influe nced both by the AGN activity as well as by the sloshing motion of the cool core clusters gas. In addition, it has a filamentary structure similar to that seen in radio relics found in merging clusters. We present a detailed description of the data reduction and imaging process of the dataset. The depth and resolution of the observations allow us to conduct for the first time a detailed comparison of the mini-halo structure with the X-ray structure as seen in the Chandra X-ray images. The resulting image shows very clearly that the mini-halo emission is mostly contained behind the cold fronts, similar to that predicted by simulations of gas sloshing in galaxy clusters. However, due to the proximity of the Perseus cluster, as well as the quality of the data at low radio frequencies and at X-ray wavelengths, we also find evidence of fine structure. This structure includes several radial radio filaments extending in different directions, a concave radio structure associated with the southern X-ray bay and sharp edges that correlate with X-ray edges. Mini-halos are therefore not simply diffuse, uniform radio sources, but are rather filled with a rich variety of complex structures. These results illustrate the high-quality images that can be obtained with the new JVLA at low radio-frequencies, as well as the necessity to obtain deeper, higher-fidelity radio images of mini-halos and halos in clusters to further understand their origin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا