ترغب بنشر مسار تعليمي؟ اضغط هنا

The two-component giant radio halo in the galaxy cluster Abell 2142

75   0   0.0 ( 0 )
 نشر من قبل Venturi Tiziana
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Venturi




اسأل ChatGPT حول البحث

We report on a spectral study at radio frequencies of the giant radio halo in A2142 (z=0.0909), which we performed to explore its nature and origin. A2142 is not a major merger and the presence of a giant radio halo is somewhat surprising. We performed deep radio observations with the GMRT at 608 MHz, 322 MHz, and 234 MHz and with the VLA in the 1-2 GHz band. We obtained high-quality images at all frequencies in a wide range of resolutions. The radio halo is well detected at all frequencies and extends out to the most distant cold front in A2142. We studied the spectral index in two regions: the central part of the halo and a second region in the direction of the most distant south-eastern cold front, selected to follow the bright part of the halo and X-ray emission. We complemented our observations with a preliminary LOFAR image at 118 MHz and with the re-analysis of archival VLA data at 1.4 GHz. The two components of the radio halo show different observational properties. The central brightest part has higher surface brightess and a spectrum whose steepness is similar to those of the known radio halos, i.e. $alpha^{rm 1.78~GHz}_{rm 118~MHz}=1.33pm 0.08$. The ridge, which fades into the larger scale emission, is broader in size and has considerably lower surface brightess and a moderately steeper spectrum, i.e. $alpha^{rm 1.78~GHz}_{rm 118~MHz}sim 1.5$. We propose that the brightest part of the radio halo is powered by the central sloshing in A2142, similar to what has been suggested for mini-halos, or by secondary electrons generated by hadronic collisions in the ICM. On the other hand, the steeper ridge may probe particle re-acceleration by turbulence generated either by stirring the gas and magnetic fields on a larger scale or by less energetic mechanisms, such as continuous infall of galaxy groups or an off-axis merger.

قيم البحث

اقرأ أيضاً

We report the discovery of extended radio emission in the Phoenix cluster (SPT-CL J2344-4243, z=0.596) with the GMRT at 610 MHz. The diffuse emission extends over a region of at least 400-500 kpc and surrounds the central radio source of the Brightes t Cluster Galaxy, but does not appear to be directly associated with it. We classify the diffuse emission as a radio mini-halo, making it the currently most distant mini-halo known. Radio mini-halos have been explained by synchrotron emitting particles re-accelerated via turbulence, possibly induced by gas sloshing generated from a minor merger event. Chandra observations show a non-concentric X-ray surface brightness distribution, which is consistent with this sloshing interpretation. The mini-halo has a flux density of $17pm5$ mJy, resulting in a 1.4 GHz radio power of ($10.4pm3.5) times 10^{24}$ W Hz$^{-1}$. The combined cluster emission, which includes the central compact radio source, is also detected in a shallow GMRT 156 MHz observation and together with the 610 MHz data we compute a spectral index of $-0.84pm0.12$ for the overall cluster radio emission. Given that mini-halos typically have steeper radio spectra than cluster radio galaxies, this spectral index should be taken as an upper limit for the mini-halo.
Diffuse radio sources associated with the intra-cluster medium are direct probes of the cosmic ray electrons and magnetic fields. We report the discovery of a diffuse radio source in the galaxy cluster RXCJ0232.2-4420 (SPT-CL J0232-4421, $z=0.2836$) using 606 MHz observations with the Giant Metrewave Radio Telescope. The diffuse radio source surrounds the Brightest Cluster Galaxy in the cluster like typical radio mini-halos. However the total extent of it is $550times800$ kpc$^{2}$, which is larger than mini-halos and similar to that of radio halos. The BCG itself is also a radio source with a marginally resolved core at $7$ (30 kpc) resolution. We measure the 606 MHz flux density of the RH to be $52pm5$ mJy. Assuming a spectral index of 1.3, the 1.4 GHz radio power is $4.5 times 10^{24}$ W Hz$^{-1}$. The dynamical state of the cluster has been inferred to be relaxed and also as complex depending on the classification methods based on the morphology of the X-ray surface brightness. This system thus seems to be in the transition phase from a mini-halo to a radio halo.
We present results from Chandra and XMM-Newton observations of Abell 98 (A98), a galaxy cluster with three major components: a relatively bright subcluster to the north (A98N), a disturbed subcluster to the south (A98S), and a fainter subcluster to t he far south (A98SS). We find evidence for surface brightness and temperature asymmetries in A98N consistent with a shock-heated region to the south, which could be created by an early stage merger between A98N and A98S. Deeper observations are required to confirm this result. We also find that A98S has an asymmetric core temperature structure, likely due to a separate ongoing merger. Evidence for this is also seen in optical data. A98S hosts a wide-angle tail (WAT) radio source powered by a central active galactic nucleus (AGN). We find evidence for a cavity in the intracluster medium (ICM) that has been evacuated by one of the radio lobes, suggesting that AGN feedback is operating in this system. Examples of cavities in non-cool core clusters are relatively rare. The three subclusters lie along a line in projection, suggesting the presence of a large-scale filament. We observe emission along the filament between A98N and A98S, and a surface brightness profile shows emission consistent with the overlap of the subcluster extended gas haloes. We find the temperature of this region is consistent with the temperature of the gas at similar radii outside this bridge region. Lastly, we examine the cluster dynamics using optical data. We conclude A98N and A98S are likely bound to one another, with a 67% probability, while A98S and A98SS are not bound at a high level of significance.
70 - T. Venturi 2011
Deep radio observations of the galaxy cluster Abell 781 have been carried out using the Giant Metrewave Radio Telescope at 325 MHz and have been compared to previous 610 MHz observations and to archival VLA 1.4 GHz data. The radio emission from the c luster is dominated by a diffuse source located at the outskirts of the X-ray emission, which we tentatively classify as a radio relic. We detected residual diffuse emission at the cluster centre at the level of S(325 MHz)~15-20 mJy. Our analysis disagrees with Govoni et al. (2011), and on the basis of simple spectral considerations we do not support their claim of a radio halo with flux density of 20-30 mJy at 1.4 GHz. Abell 781, a massive and merging cluster, is an intriguing case. Assuming that the residual emission is indicative of the presence of a radio halo barely detectable at our sensitivity level, it could be a very steep spectrum source.
New radio data is presented for the rich cluster Abell 2163. The cluster radio emission is characterized by the presence of a radio halo, which is one of the most powerful and extended halos known so far. In the NE peripheral cluster region, we also detect diffuse elongated emission, which we classify as a cluster relic. The cluster A2163 is very hot and luminous in X-ray. Its central region is probably in a highly non relaxed state, suggesting that this cluster is likely to be a recent merger. The existence of a radio halo in this cluster confirms that halos are associated with hot massive clusters, and confirms the connection between radio halos and cluster merger processes. The comparison between the radio emission of the halo and the cluster X-ray emission shows a close structural similarity. A power law correlation is found between the radio and X-ray brightness, with index = 0.64. We also report the upper limit to the hard X-ray emission, obtained from a BeppoSAX observation. We discuss the implications of our results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا