ﻻ يوجد ملخص باللغة العربية
We discuss an exotic phase that adjoint QCD possibly exhibits in the deep infrared (IR). It is a confining phase, with a light spectrum consisting of massless composite fermions. The discrete chiral symmetry is broken, with unbroken continuous chiral symmetry. We argue that it may give a description of the IR of adjoint QCD with three massless Weyl flavors and that it passes all consistency checks known to us.
We study light (u, d) quark matter with charm impurities. These impurities are added to the Lagrangian density. We derive the equation of state (EOS) of this kind of quark matter, which contains a Kondo phase. We explore this EOS and study the struct
I report on recent results obtained within the Hamiltonian approach to QCD in Coulomb gauge. Furthermore this approach is compared to recent lattice data, which were obtained by an alternative gauge fixing method and which show an improved agreement
We study the effects of the CP-breaking topological $theta$-term in the large $N_c$ QCD model by Witten, Sakai and Sugimoto with $N_f$ degenerate light flavors. We first compute the ground state energy density, the topological susceptibility and the
We apply the relation between deep learning (DL) and the AdS/CFT correspondence to a holographic model of QCD. Using a lattice QCD data of the chiral condensate at a finite temperature as our training data, the deep learning procedure holographically
We investigate the effects of anisotropy on the chiral condensate in a holographic model of QCD with a fully backreacted quark sector at vanishing chemical potential. The high temperature deconfined phase is a neutral and anisotropic plasma showing d